Простой зарядник для аккумулятора автомобиля своими руками: Простая автомобильная зарядка своими руками. Зарядное устройство для автомобильного аккумулятора своими руками. Необходимые материалы и инструменты

Содержание

Самый простой зарядник для аккумуляторной батареи

Это пожалуй самое простое зарядное устройство для аккумуляторных батарей, что можно придумать. Такая зарядка не один раз выручала меня в трудных ситуациях. Ее довольно просто собрать своими силами при отсутствии паяльника и прочих радиоэлементов. Таким зарядным устройством можно зарядить аккумулятор мотоцикла или машины в различных непростых ситуациях.

Таким устройством в повседневной жизни я конечно не советую пользоваться, потому что все детали его включая аккумуляторную батарею находятся под опасным для жизни напряжением 220 вольт, а для разового применения вполне сгодится, естественно при соблюдении элементарных правил электробезопасности. Самый большой его плюс это очевидная простота конструкции не требующая больших знаний в радиоэлектронике и дефицитных деталей. А большим минусом — низкий КПД. Познакомимся со схемой зарядника:

В нем всего две детали: лампа накаливания и диод. При использовании лампы накаливания мощностью 100 Ватт ток зарядки аккумулятора составляет около 0,25 Ампера, что вполне достаточно для зарядки мотоциклетного аккумулятора.

Также можно навесить еще такую же лампу и получить примерно 0,5 Ампера. Детали: лампа накаливания любая стандартная, на напряжение 250 вольт; диод любой- напряжением 250 вольт и током не ниже 0,5 А.

Вот еще более сложная схема этого зарядника.

В нем уже четыре диода или один диодный мост. Тут от одной 100 Ваттной лампы ток составляет около 0,5 Ампера. Но естественно можно его увеличить навесив параллельно еще лампы накаливания из расчета 1 лампа = 0,5 А. Мощность диодов вычислите сами в зависимости от количества ламп и напряжением не ниже 250 вольт.

Вообще аккумуляторную батарею следует заряжать 0,1 от ее емкости. То есть если аккумуляторная батарея емкостью 90 ампер/ часов, то ток через нее должен быть 9 ампер. Время с полной разрядки до полного заряда составит около 10-12 часов. Но обычно таким током мало кто заряжает и берут обычно раза в два меньше и время больше. Это я Вам говорю для того, что бы Вы сами рассчитывали свое время заряда.

Лично у меня был такой случай. Как-то раз я приехал на дачу и по неловкости забыл выключить габариты. После нескольких часов работы на даче, перед тем как ехать я вставил ключ в замок зажигания и понял, что аккумулятор в ноль разряжен. Поблизости не то, что машин, людей нет, чтоб помощи попросить. Благо на даче было электричество. Я быстро порылся в сарае и нашел советскую плату от лампового телевизора. Я выдрал от туда выпрямительную плату с диодами. Ну а лампочку найти не проблема. Собрал все минут за двадцать. Снял аккумулятор, все соединил, включил в сеть. (будете делать подобное — не перепутайте последовательность действий!). Пошел попил чайку. Через часа два — три решил попробовать завести, аккумулятор был не новый, но и не старый. Выключил, поставил аккумулятор,завел. Завелась машина без лишних трудностей. Ну а дальше пускай автомобильная система зарядки работает. И я без проблем добрался до дома.

P.S.: Хочу еще раз обратить Ваше внимание на соблюдение правил электробезопасности! Перед всеми работами выключайте питание сети! Напряжение 220 вольт опасно для жизни!

Будьте особо осторожны!

схема простого самодельного зарядника для АКБ.

Как сделать самому автоматическое устройство?

Зарядное устройство для подзаряда АКБ машины, будь оно самодельным или уже готовым, удовлетворяет двум условиям: надёжность (запас по мощности в 3 раза), от которой зависит долговечность, и стабильный ток (или напряжение). В принципе, автомобильную батарею можно заряжать хоть выпрямленными 220 вольтами от розетки, лишь бы ЗУ не перегревалось.

Требования к самодельным устройствам

Первым делом АКБ нужно обеспечить ток, равный 10% от её ёмкостного ампеража, указанного на этикетке. Если заряжается 75-амперный аккумулятор, то и ток ему нужен такой, что равен не более 7,5 А. Напряжение на АКБ, которая заряжается именно по его величине, не должно превышать 14 В. Для ЗУ, осуществляющих подзаряд по току, напряжение может изменяться в широких пределах, вплоть до нескольких сотен вольт. Ток должен быть постоянным. Переменное напряжение уничтожит батарею из-за своей знакопеременности. Лучшим выпрямителем в схеме считается именно диодный мост.

Если заряжается АКБ с неизвестным значением ёмкости, то ток предварительно уменьшают, контролируя вольтметром напряжение на подключённой к ЗУ батарее. В современных импульсных источниках питания измерители тока и напряжения уже имеются. Если сетевое напряжение пропало (выключили электричество на линии), то разряд АКБ не должен осуществляться через само зарядное устройство. Такое могло бы происходить в случае, когда владелец надолго вышел из дома, а в его отсутствие электричества не было несколько и более часов.

Чтобы автоматизировать подзаряд, в схему зарядного устройства встроен контроллер. Он избавляет владельца от необходимости самостоятельно контролировать весь процесс, отнимая время у самого себя.

Для аккумуляторов разной ёмкости зарядный ток должен регулироваться от сотен миллиампер до 33 А – с учётом требований к ёмкостному амперажу АКБ со стороны производителей грузовиков.

Сборка простой модели

Для автомобильного аккумулятора схема, собранная своими руками, предусматривает несколько вариантов построения ЗУ: от простого до усложнённого. Например, самое простое, обладающее гасящими конденсаторами, способно подзарядить АКБ ёмкостью до 100 А*ч, предусмотрено ступенчатое выставление рабочего тока от 1 до 10 А. Этого окажется достаточно для обслуживания автомобильной АКБ в легковой машине, включая и внедорожники.

Главным компонентом послужит понижающий сетевой трансформатор, на который напряжение подаётся через гасящие конденсаторы. Каждый из них обладает выключателем, позволяющим задействовать его в электроцепи. Ёмкость конденсаторов позволяет подстроить ток заряда в 1, 2, 4 и 8 А – путём включения нужных. Включая и отключая нужные и ненужные соответственно, вы получите ступенчатую регулировку зарядного тока. Запас рабочего напряжения для конденсаторов – не менее 400 В. Использование полярных конденсаторов вместо неполярных, например электролитических, не годится для «переменки»: за короткое время они нагреются и взорвутся.

Сниженное при помощи трансформатора напряжение подают на диодную сборку, где оно выпрямляется до постоянного. Выпрямленная в «постоянку» «переменка» заряжает непосредственно саму АКБ. Схема не защищена от потери заряда батареи через ЗУ в случае выключения подачи 220 В.

Диоды, из которых собирается одноименный мост, выдерживают прямой ток не менее 10 А и обратное напряжение не ниже 25 В. Соответственно, трансформатор также должен обеспечить выходное напряжение хотя бы в 20 В: чем выше напряжение, тем стабильнее зарядный ток. Вольтметр и амперметр должны выдерживать предел измерений в 25 В и 15 А соответственно.

Достоинство такой схемы – она пригодна для подзаряда АКБ на 6, 14 и 18 В, поскольку ЗУ выдаёт более 20 В.

Зарядное устройство с фазоимпульсной регулировкой

Для сборки данного варианта ЗУ не потребуется редких и дорогих деталей – подойдут даже элементы производства эпохи послевоенного СССР. Собранное устройство позволяет отрегулировать ток плавно – от 0 до 10 А, что пригодно для подзаряда 100-амперных батарей. Регулятор зарядного тока строится на управляемых переключающих диодах – т. н. тиристорах. Тиристорные выпрямители универсального назначения (ВУТы) широко применялись и для организации подзарядки сборок кислотно-свинцовых «банок» с общей ёмкостью установки в аккумуляторном помещении до 1 килоампера. Это позволяло несколько часов питать радиорелейную аппаратуру в технических аппаратных даже в случаях, когда на дизель-генераторных агрегатах в баках внезапно заканчивались дизтопливо и дизмасло, а основная и резервная ЛЭПы также оказывались обесточенными, хотя полное отсутствие внешнего (первичного) электропитания – исчезающе редкий случай. Сегодня тиристорные выпрямители сетевого напряжения – правда, в значительно уменьшенной версии – с успехом до сих пор используются для подзаряда автомобильных АКБ.

Тиристорные сборки в простейшем случае изготавливаются на основе однопереходных или обычных биполярных транзисторов. В этой цепи содержится резистор, которым подстраивается время задержки срабатывания переходов транзисторов. А это позволяет задать ток подзаряда, показания которого отображаются на амперметре. Питание этой схемы – от диодного моста, до которого в схеме установлен понижающий трансформатор. Вместо имеющегося в схеме элемента КУ202В применяют КУ202 с индексами Г–Е либо аналоги помощнее вроде Т-160 и Т-250. Выпрямительные диоды выдерживают обратное напряжение не ниже 40 В и прямой ток в 10 А. Диоды и тиристор ставятся на радиаторы с площадью теплоотдачи не менее 1 дм2. Более мощные тиристоры ставить на радиатор незачем. Нагрузка на вторичную обмотку – 10 А при 22 вольтах. Транзисторы КТ361А можно заменить на КТ361Б-Е, КТ502В, КТ3107А, КТ501Ж–К, КТ502Г. Вторым берётся КТ315А-Д, КТ3102А, КТ312Б. Вместо КД-105Д – КД105Г, КД105В, Д226 (высоковольтные). Амперметр должен замерять токи до 15 А, вольтметр – с напряжением предела до 20 В.

Изготовление из драйвера для светодиодных лент

Автоматическое ЗУ также изготавливается из драйвера питания для светолент. Его мощность в запасе не должна оказаться менее 100 ватт. Чтобы не было проблем с получением выходного напряжения, можно использовать любое, например, от сетевых прожекторов. Дело в том, что платы в них выдают напряжение до 80 В – в зависимости от схемы сборки светоизлучающей панели или ленты. Старайтесь выбирать те лампы или панели, в которых светосборки образуют последовательные группы светодиодов, соединённые параллельно. Главное – обеспечить такую их работу, чтобы микросборка не перегревалась, как это происходит, например, на светодиодных лампах комнатного назначения.

Некоторые мощные лампы обладают подстроечным резистором. Попробуйте поднять его напряжение до максимально возможного – или до такого, при котором он способен выдать хотя бы 14 В. Предел выставляемого выходного напряжения зависит от того, насколько электроника по своим параметрам отличается от ожидаемых параметров, т. к. даже в одной и той же партии транзисторы и микросхемы имеют немного разные параметры.

Если в драйвере питания светодиодов переменного резистора нет, но вы нашли один из впаянных ЧИП резисторов, номинал которого и выставляет выходное напряжение, аккуратно отпаяйте его, не перегревая дорожки, и припаяйте обычный переменный, выведя провода для его подключения. На разных драйверах этот резистор подписан обычно небольшим номиналом сопротивления в 25… 90 Ом, например маркер «26R».

На других резисторах указано большое сопротивление – до сотен тысяч Ом (маркер 364 обозначает 360 тысяч Ом, 360 кОм, 36 с четырьмя нулями, здесь последняя цифра указывает количество нулей, таков формат).

Высокоомные резисторы не трогайте – замените один из низкоомных, он и задаёт напряжение или рабочий ток для питания светосборки. Старайтесь не перегреть драйвер: на него ставят радиатор на термопасте, чтобы плата не нагревалась больше 40 градусов, либо устанавливают компьютерный кулер, например, от процессора ПК. Если драйвер перегревается, то лучше установить и то и другое.

Заменив нужный резистор, проверьте самодельное ЗУ. Если оно сразу начало заметно нагреваться – температура повысилась за минуту до 60 и более градусов, то увеличьте его сопротивление, установите теплоотводящие элементы. Задача – получить 15 В на выходе. В целях экономии многие китайские производители устанавливают конденсаторы с напряжением не более 16 В, поэтому важно не превысить допустимый предел, иначе они нагреются и «пробьются».

Главным достоинством такого ЗУ послужит его способность не перезарядить АКБ. Даже когда вы её забыли вовремя отключить от сети питания, она останется в целости и сохранности, т. к. ширина и высота (длительность и амплитуда) импульсов на таком устройстве выстраиваются по нагрузке. Контроллер от светоленты или светофары подстраиваются под нагрузку. Это ЗУ подходит для закрытых гелевых батарей, которые не могут быть обслужены без принудительного вскрытия. Технология AGM, за которую потребитель заплатит повышенным вниманием к питающему батарею во время подзаряда напряжению или току, обладает существенным недостатком: такие АКБ чувствительны к малейшему перезаряду, т. к. могут вздуться и лопнуть.

Другие идеи создания

Сделать самому для автомобиля пуско-зарядное устройство можно на основе бесперебойника. Данное решение относится к умным и портативным, которое можно собрать, не заказывая огромного количества деталей для сборки. Хорошее по своим параметрам ЗУ для машины изготавливается из блока питания, чей рабочий запас по напряжению как минимум двойной.

Такая схема обладает толстыми и хорошо изолированными проводами (можно использовать любые негорючие), схемой защиты. Даже когда оно изготовлено из старого стабилизатора, который в своё время собирали из долговечных деталей, такое ЗУ считается довольно надёжным.

Для зарядки и тренировки

Зарядно-тренировочное ЗУ подзаряжает батарею током с пульсацией, а в паузах между зарядными импульсами батарея разряжается по силе тока не более, чем в пол-ампера. Полезный эффект заключается в десульфатации пластин – этот процесс позволяет предотвратить их постепенное осыпание. Импульс зарядного тока достигает 10 А, возможно плавно отрегулировать его. В схеме содержится понижающий трансформатор – он выдаёт 25 В «переменки». Она поступает на однополупериодный выпрямитель на основе двух диодов. Чтобы не потерять половину мощности, диоды включаются параллельно. Отрегулировать зарядный ток можно при помощи ключевого элемента на транзисторе, включённого в отрицательную электроцепь. Срабатывание транзистора выставляется на резисторе. Питание эта цепь получает от параметрического стабилизатора. Когда положительная полуволна заканчивается, диоды заперты. До прихода следующей полуволны батарея разряжается через гасящий резистор. В схему прибора входят вольтметр и амперметр.

Чтобы спасти батарею от глубокого разряда при внезапном и долгосрочном исчезновении напряжения, в схеме ЗУ встроен функциональный узел на основе реле. Пока ЗУ подключено к сети, это реле образует цепь питания, по которой и течёт зарядный ток. Когда сетевое напряжение пропало, реле отключается и размыкает цепь, отчего потеря зарядного тока через АКБ исключена. Релейный способ защиты от разряда не отключённой вовремя батареи – устаревший, но не менее надёжный, помогающий спасти АКБ от порчи. В современных ЗУ эту функцию исполняют транзисторные силовые ключи. Рабочие характеристики трансформатора следующие: 25 В на вторичной обмотке при работе, 5-амперный ток нагрузки. Диоды в выпрямителе рассчитаны на ток в 10 А, но для исключения их перегрева лучше взять 20- или 30-амперные, чтобы не устанавливать их на радиатор. Рабочее напряжение диодов – от 40 В. Транзистор КТ827 – или его зарубежный аналог такой же мощности – ставится на радиатор. Стабилитрон рассчитан на малую мощность и напряжение до 12 В. В качестве резисторов лучше выбрать мощные проволочные. Напряжение срабатывания реле – 24 В и с током на контактах до 6 А.

Постоянное по току реле подключается через дополнительный диодный мост.

Для АКБ с ШИМ-регулировкой тока

Такой вариант – способ получить ток до 6 А. ШИМ-регулировка тока по своему электромонтажному и сборочному чертежам демонстрирует малые габариты. Благодаря решению на основе ШИМ управляющий током подзаряда транзистор выделяет меньше тепла за счёт работы в режиме ключа. Регулировочный блок для зарядного тока, в состав которого входит задающий генератор, реализован на базе микросхемы К561ЛА7. Генерация задающей частоты — 13 кГц, скважность импульсов регулируется при помощи подстраивающего резистора. Сигнал генератора подается на униполярный транзистор, функционирующий в режиме ключа. Выставляя номинал сопротивления на регулирующем резисторе, вы управляете отношением значения времени открытия транзистора к периоду, в котором он же находится в случае запертого элемента. Это даёт возможность выставить ток подзаряда батареи, который проходит через амперметр ЗУ.

Электропитание на микросхему идёт от простого параметрического стабилизатора, в состав которого входят резистор и диод. Стабилизатор подсоединён к выпрямляющему переменное напряжение диодному мосту. Чтобы устройство занимало меньше места, диодный мост собран на диодах Шоттки. Для успешной работы такого ЗУ вторичная обмотка трансформатора выдаёт 20 В и ток в 7 А. При использовании трансформатора с отводами от вторичной обмотки (обмоточная трёхточка) число диодов сокращается вдвое. Тогда часть вторичной обмотки окажется незадействованной. Выпрямительные диоды устанавливаются на теплоотводящий радиатор. Для успешного теплоотвода применяют прокладки со слюдой или теплопроводящую пасту.

Если размеры ЗУ для вас не особенно важны, то диоды Шоттки меняются на обычные полупроводниковые, однако им потребуется больший по своей площади рассеивания радиатор. Диоды рассчитаны на ток в 10 А и обратное напряжение от 40 В – если об этом не позаботиться, то эти элементы при работе нагреются до 70 градусов, что само по себе опасно для полупроводниковых элементов. При невысоком зарядном токе – до 5 А – транзистор в схеме ставить на радиатор незачем.

Радиаторы изготавливаются преимущественно из меди или алюминия: эти металлы обладают хорошей теплопроводностью. Размер пластины – 5*5 см, толщина – 1 мм.

С фазоимпульсной регулировкой

Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0… 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.

Схема устройства с фазоимпульсной регулировкой

От простого тиристорного (переключающего) управления этот вариант отличается введением в схему элементов фазоимпульсного управления (ФИМ контроллер). В простейшем случае переключающий элемент изготавливается из двух мощных биполярных транзисторов. Как и в предыдущем случае с тиристорным управлением, путём изменения сопротивления переменного резистора изменяется интервал задержки при открывании тиристора относительно момента прихода полуволны.

С этим интервалом выставляется и ток подзаряда, контролируемого по показаниям амперметра. Питание этого функционального узла осуществляется от диодного моста, подсоединённого к выходу вторичной обмотки понижающего сетевое напряжение трансформатора. Детали меняются, как и в предыдущем варианте тиристорного ЗУ без ФИМ, на аналогичные.

Нюансы использования

При использовании самодельного пускового ЗУ установите допустимые рабочие параметры, как в случае с промышленным устройством. Ток выставляется на нулевое значение, АКБ подключается к ЗУ, затем устройство включается в сеть. С помощью регулятора устанавливается нужный ток подзаряда. Если АКБ заряжена до 13,2 В, то выбранное значение уменьшают в 2 раза. При напряжении в 13,8 В значение тока устанавливается нулевым, и ЗУ отключается, затем батарея отсоединяется от него. Автоматическая схема самостоятельно выключит ток заряда, когда напряжение достигнет всё тех же 13,8 В.

Если напряжение на вольтметре оказалось нетипичным – ниже 11,6 В, то проверьте АКБ с помощью разрядной лампы. Ею может оказаться фара от автомобиля, мотоцикла или 12-вольтовый прожектор. На закрытых батареях проверить напряжение на каждой «банке» кислотно-свинцовой батареи нельзя – выводы закрыты верхней планкой. Если напряжение просело сразу, то АКБ всё же необходимо подзарядить, для этого попробуйте выставить пониженное напряжение. Это делается, чтобы определить, есть ли в АКБ короткозамкнутая «банка». Дело в том, что бывают случаи, когда общее напряжение АКБ – не 12,6, а, скажем, 10,5 В, что указывает на рассыпавшуюся «банку».

Чтобы не перезарядить оставшиеся (исправные и рабочие), используется несколько пониженное напряжение: при полном заряде и одной неисправной «банке» окончательное значение составит, согласно подсчёту, не 13,8, а 11,5 В. В норме каждую «банку» нельзя перезаряжать выше 2,3 В в буферном режиме. При циклическом способе подзаряда каждая «банка» заряжается до 2,4… 2,5 В, в сумме напряжение как раз и составит 14,4… 15 В, а 5 «банок», в свою очередь, выдают 12… 12,5 В, а не 14,4… 15. Гелевые АКБ, благодаря отклеиванию на корпусе верхней планки, закрывающей выводы «банок», проверяются поэлементно.

При самостоятельном ремонте АКБ повреждённая «банка» исключается из схемы (отрезаются выводы), и АКБ можно пользоваться дальше, но с уже пониженным напряжением. Для уцелевших 5 из 6 банок напряжение подзаряда составит 11,5… 12,5 В – его и выставляют на ЗУ.

Заметки для мастера — Зарядные устройства для АКБ

        Компактное зарядное устройство на тиристоре

На рис. 1 показана схема простого зарядного устройства для автомобильного аккумулятора.

Рис.1
При достижении некоторого значения напряжения (задается цепью R2,V1,V2), зарядное уст-во на тринисторе отключает его от аккумулятора. Образцовое напряжение на аккумулятора сравнивается при каждом положительном полупериоде пока тиристор закрыт. Когда аккумулятор разряжен тиристор открывается в моменты каждого положительного полупериода с некоторой задержкой, но только как аккумулятор будет близок к полной зарядке тиристор будет открывать с большей задержкой и при достижении определенного значения когда аккумулятор полностью зарядится, тиристор перестанет открываться. Сравнение напряжений происходит в цепи управляющего электрода тиристора.
Напряжение на выходе тиристора зависит от его параметров, поэтому возможно подборка тиристора если напряжение 13,5В окажется немного заниженным.
Трансформатор любой на напряжение во вторичной обмотке 20В исходя из значения зарядного тока.

Борноволоков Э. П.,Флоров В.В. Радиолюбительские схемы — 3-е издание, перераб. и доп. — К.:Технiка, 1985

На рисунке 2, показана схема автоматического зарядного уст-ва, которое позволяет заряжать автомобильный аккумулятор при разряде и прекращать зарядку при полном заряде аккумулятора. Такое уст-во желательно использовать для аккумуляторов которые находятся при длительном хранении.

Переключение в режим заряда производится путем измерения напряжения на клеммах аккумулятора. Заряд начинается когда напряжение на клеммах аккумулятора становится ниже 11,5 В и прекращается при достижении 14 В.

ОУ в схеме служит как прецизионный компаратор напряжения, который контролирует уровень напряжения батареи. Его инвертирующий вход получает опорное напряжение 1,8 В, а на неинвертирующий вход через делитель подается напряжение аккумулятора около 2В (при полном заряде аккумулятора). В этом случае реле отключено, так как выход ОУ имеет высокий уровень напряжения. При падении напряжения на клеммах аккумулятора, напряжение на неинвертирующем входе ОУ становится 1,8 В, компаратор переключается, это приводит к включению реле, аккумулятор начинает заряжаться.


После сборки зарядного уст-ва его необходимо отрегулировать:

    1. Разрядите аккумулятор до напряжения 11,5 В
    2. Подключите зарядное уст-во к аккумулятору
    3. Отрегулируйте R6 до срабатывания реле
    4. При заряде аккумулятора проведите замеры напряжения на его клеммах, при достижении 14 В отрегулируйте потенциометр R5 до отключения реле
    При необходимости повторите процесс настройки

На основе стабилизатора LM317 можно сделать простое и эффективное зарядное уст-во. Предложенное уст-во предназначено для зарядки аккумуляторов 12 В. Максимальный ток зарядки 1,5А. Ток зарядки можно регулировать при помощи потенциометра R5. По мере зарядки аккумулятора зарядное уст-во снижает ток зарядки. Стабилизатор LM317 должен быть установлен на радиатор.

         Узел индикации тока заряда


        Если зарядное устройство для автомобильных аккумуляторов не имеет амперметра, трудно гарантировать их надежную зарядку. Возможно ухудшение (пропадание) контакта на батареи, обнаружить которое достаточно трудно. Вместо амперметра на рис.4 предлагается простой индикатор. Он включается в разрыв «плюсового» провода от зарядного устройства к АКБ.


Рис.4

        Схема представляет собой транзисторный ключ VT1, включающий светодиод HL1, когда через R1 протекает зарядный ток. В этом случае падение напряжения на резисторе R1 (более 0,6В) достаточно для открывания транзистора VT1 для зажигания HL1. Для конкретного аккумулятора номинал R1 подбирается так, чтобы светодиод зажигался при требуемом зарядном токе. По яркости его свечения можно приблизительно оценить зарядный ток. Резистор R1 – проволочный, изготавливается из 6…12 витков обмоточного провода диаметром 1мм. Можно использовать проволоку с высоким удельным сопротивлением (нихром) или резистор промышленного изготовления, например, ПЭВР-10.  

 

          Зарядное устройство с автомобильным регулятором напряжения

 

        Простое зарядное устройство, показанное на рис.5, послужит для зарядки аккумулятора, и его долгосрочным хранением в рабочем состоянии.

 

Рис.5

        Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно – тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Таким образом на аккумуляторной батарее поддерживается напряжение 14 В при зарядном токе, определяемом емкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:

                    3200 .Iз .U2

С (мкФ) = ———————— ,

                           U1 2  

где Iз – зарядный ток (А), U2 – напряжение вторичной обмотки при «нормальном»включении трансформатора (В), U1 – напряжение сети.

        Настройки устройство практически не требует. Возможно, придется уточнить емкость конденсатора, контролируя ток амперметром. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).

 

Из ж.(РЛ 5-99)


 

          Реверсирующая приставка к зарядному устройству

 

        Эта приставка, схема которого показана на рис.6, выполнена на мощном составном транзисторе и предназначена для зарядки автомобильной аккумуляторной батареи напряжением 12В переменным асимметричным током. При этом обеспечивается автоматическая тренировка батареи, что уменьшает склонность ее к сульфатации и продляет срок службы. Приставка может работать совместно практически с любым двуполупериодным импульсным зарядным устройством, обеспечивающим необходимый ток зарядки.

 

Рис.6

        При соединении выхода приставки с батареей (зарядное устройство не подключено), когда конденсатор С1 еще разряжен, начинает течь начальный зарядный ток конденсатора через резистор R1, эмиттерный переход транзистора VT1 и резистор R2. Транзистор VT1 открывается, и через него протекает значительный разрядный ток батареи, быстро заряжающий конденсатор С1. С увеличением напряжения на конденсаторе ток разрядки батареи уменьшается практически до нуля.

        После подключения зарядного устройства к входу приставки появляется зарядный ток батареи, а также небольшой ток через резистор R1 и диод VD1. При этом транзистор VT1 закрыт, поскольку падения напряжения на открытом диоде VD1 недостаточно для открывания транзистора. Диод VD3 также закрыт, так как к нему через диод VD2 приложено обратное напряжение заряжаемого конденсатора С1.

        В начале полупериода выходное напряжение зарядного устройства складывается с напряжением на конденсаторе, и зарядка батареи происходит через диод VD2, что приводит к возврату энергии, накопленной конденсатором, в батарею. Далее конденсатор полностью разряжается и открывается диод VD3, через который теперь продолжается зарядка батареи. Снижение выходного напряжения зарядного устройства в конце полупериода до уровня ЭДС батареи и ниже приводит к смене полярности напряжения на диоде VD3, его закрыванию и прекращению зарядного тока.

        При этом вновь открывается транзистор VT1 и происходит новый импульс разрядки батареи и зарядки конденсатора. С началом нового полупериода выходного напряжения зарядного устройства начинается очередной цикл зарядки батареи.

        Амплитуда и длительность разрядного импульса батареи зависят от номиналов резистора R2 и конденсатора С1. Они выбраны в соответствии с рекомендациями.

        Транзистор и диоды размещают на отдельных теплоотводах площадью не менее 120 см2  каждый.

        Кроме указанного на схеме транзистора КТ827А, можно использовать КТ827Б, КТ827В. В приставке могут быть применены транзисторы КТ825Г – КТ825Е и диоды КД206А, но при этом полярность включения диодов, конденсатора, а также входных и выходных зажимов приставки нужно изменить на противоположную.

 

Фомин.В

г. Нижний Новгород 


 

          Простое автоматическое зарядное устройство

 

        Обычное зарядное устройство для зарядки стартерных батарей состоит из трансформатора, обмотка которого имеет отводы, диодного однополупериодного выпрямителя и амперметра, измеряющего зарядный ток. Такое зарядное устройство не может контролировать процесс зарядки и не умеет восстанавливать засульфатированные аккумуляторы.

 

Рис.7

        Если на выходе такого зарядного устройства включить узел, схема которого показана на рис.7, то устройство станет автоматическим и научится восстанавливать аккумуляторы тренировочным током.

        При подключении аккумулятора тиристор открывается только на положительных полупериодах пульсирующего напряжения. На отрицательных (когда выпрямительный диод ЗУ закрыт) тиристор закрыт и происходит тренировочная разрядка аккумулятора через резистор R3.

        В начале каждого полупериода, еще до открывания тиристора, происходит измерение напряжения на аккумуляторе. Если это напряжение полностью заряженного аккумулятора (13,5 В), то стабилитрон открывается и не дает открываться тиристору.

        По мере заряда батареи открывание тиристора происходит ближе к вершине пульсирующего напряжения. Закрывание тиристора происходит на спаде полуволны пульсирующего напряжения, когда это напряжение становится ниже напряжения на аккумуляторе.

 

Каравкин В.

Литература:

Васильев В.

«Зарядное устройство»

ж. Радио №3 1976 г.   


 

          Устройство дозарядки аккумулятора автомобиля

 

        В том случае, если автомобиль длительное время простаивает без движения, происходит постепенный разряд его аккумулятора. Особенно это ощущается при хранении автомобиля в неотапливаемых гаражах в зимнее время – при отрицательных температурах. Запуск двигателя сопряжен с поисками пускового устройства у знакомых автолюбителей или попыткой получить от них заряженный аккумулятор во временное пользование. Избежать эту проблему помогает устройство дозарядки аккумулятора автомобиля. Простота схемы и отсутствие дефицитных радиокомпонентов делают ее доступной для повторения.

        Общеизвестно, что все химические источники тока подвержены саморазряду. Степень саморазряда зависит от ряда причин. Причины обусловленные конструктивными особенностями аккумуляторов, в данной статье не рассматриваются – автомобилистам приходится эксплуатировать те аккумуляторы, которые имеются на их транспортных средствах. Технологическая (для автомобилей) причина разряда аккумулятора обусловлена условиями хранения аккумулятора. От этого будет зависеть как срок службы аккумулятора, так и степень его готовности к работе в электрооборудовании автомобиля.

        Ток саморазряда автомобильных аккумуляторов во многом зависит от «возраста» аккумулятора. Приблизительно можно считать, что ток саморазряда аккумулятора при хранении в неотапливаемом помещении или на открытом воздухе составляет до 180 мА. Приблизительно такой ток подзаряда аккумулятора обеспечит его постоянную готовность к работе.

        В схеме (рис.8) маломощный трансформатор TR1 понижает напряжение 220 В примерно до 12 В.

 

Рис.8

Переменное напряжение выпрямляется мостовым выпрямителем D1 и через резистор R3 подается на выход «OUT». Возможно использовать автомобильный штекер XR1, который можно вставить в гнездо прикуривателя автомобиля. При подаче питания на схему зажигается зеленый (GREEN) светодиод D2.

        При протекании тока подзаряда аккумулятора автомобиля на резисторе R3 создается падение напряжения. Будучи приложенным к базе транзистора Т1 через резистор R4 это напряжение вызывает насыщение транзистора и зажигание светодиода D3 (RED).

 

Яковлев Е.Л.

г. Ужгород

(«Радиоаматор» №12, 2009)


 

          Зарядное  устройство для АКБ

 

        При отсутствии полноценного зарядного устройства довольно простой выпрямитель можно изготовить по простой схеме на рис.9.

 

Рис.9

        Заменить полноценное зарядное устройство он не может, так как сила зарядного тока составляет всего 0,4 … 0,5 А, но вполне пригоден для того, чтобы, например, за 2…3 суток довести аккумуляторную батарею до того работоспособного состояния, которое было утрачено за месяцы зимнего бездействия. Выпрямитель собран на четырех кремниевых диодах. Последовательно с ними включена лампа на 220В мощностью 70…100 Вт, ограничивающая зарядный ток. В схеме могут быть использованы диоды, имеющие максимально допустимое обратное напряжение не менее 400 В и средний выпрямительный ток не менее 0,4 А. Подходят диоды Д7Ж, Д226, Д226Д, Д237Б, Д231, Д231Б, Д232 или другие с аналогичными характеристиками.

       При работе с выпрямителем следует соблюдать осторожность, так как все его детали через лампу соединены непосредственно с электросетью и поэтому прикосновение к ним опасно. Если выпрямитель подключен к сети, то не следует прикасаться даже к корпусу аккумуляторной батареи, так как он может быть покрыт тончайшей пленкой электролита – проводника электрического тока. При необходимости измерить напряжение или плотность электролита в аккумуляторной батарее выпрямитель обязательно следует отключить от сети.

 

Горнушкин Ю.

«Практические советы владельцу автомобиля»


 

          Простое подзарядное устройство

 

        Схема представляет собой простой безтрансформаторный источник питания, выдающий постоянное напряжение 14,4 В, при токе до 0,4 А. (рис.10)

 

Рис.10

        Конструкция простая и используется для подзарядки аккумуляторной батареи, которая хранилась длительное время.

       Как показывает практика для восстановления требуется небольшой ток, около 0,1- 0,3 А  (для 6СТ-55). Если хранящийся аккумулятор, периодически, примерно раз в месяц, ставить на такую подзарядку на 2-3 дня, то можно быть уверенным в том, что в любой момент будет готов к эксплуатации, даже через несколько лет такого хранения (проверенно практически).

       Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от электросети поступает на мостовой выпрямитель VD1…VD4 через конденсатор C1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор C1 гасит избыток напряжения  и ограничивает ток до величины не более 0,4 А. Конденсатор C2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно VD5 .

        Устройство работает следующим образом. При саморазрядке батареи до напряжения ниже 14,4 В начинается её «мягкая» зарядка слабым током, причем величина этого тока находиться в обратной зависимости от напряжения на аккумуляторе. Но в любом случае (даже, при коротком замыкании) не привышает 0,4 А. При зарядке батареи до напряжения 14,4 В зарядный ток прекращается вовсе.

    В устройстве использованы: конденсатор C1 – бумажный БМТ или любой неполярный на 3…5 мкф и напряжение не ниже 300 В, С2 – К50-3 или любой электролитический на 100…500 мкф, на напряжение не ниже 25 В; диоды выпрямителя VD1…VD4 – Д226, КД105, КД208, КД209 и т.п.; стабитрон Д815Е или другие на напряжение 14 -14,5 В при токе не ниже 0,7 А. Смонтировать стабилитрон желательно на теплоотводящей пластине.

      При эксплуатации устройств подобного типа необходимо соблюдать правила безопасности при работе с электроустановками. 

Как ухаживать за автомобильным аккумулятором

Даже если вы едете на внедорожнике, пожирающем бензин, электричество по-прежнему имеет решающее значение для вождения автомобиля. Благодаря современным электрическим батареям водителям больше не нужно проворачивать двигатель свыше раз вручную . Теперь все это происходит поворотом ключа или нажатием кнопки.

Ты любишь машины. И мы тоже. Давайте поболтаем над ними вместе.

Но помимо первоначального зажигания, аккумуляторная батарея продолжает играть жизненно важную роль во всех электрических системах вашего автомобиля, но существуют некоторые мифы об этом электрическом сердце, пульсирующем во всех наших автомобилях.Вот тщательное исследование этих мифов и несколько холодных, неопровержимых фактов, чтобы заменить их.

Срок службы батареи (и смерть)

Дэйв КингGetty Images

Автомобильный аккумулятор должен прослужить около шести лет, но, как и в случае с большинством автомобильных запчастей, все зависит от того, как с ним обращаться. Многократные циклы разрядки/зарядки сокращают срок службы любой батареи, а использование электроники в автомобиле при выключенном двигателе — самый быстрый путь к полной разрядке батареи.Конечно, аккумулятор может поддерживать заряд при работающем двигателе, но когда он выключен, электроника получает питание непосредственно от аккумулятора.

Чтобы избежать повторяющегося автомобильного кошмара, всегда выключайте фары и освещение салона, когда закончите движение. Помните, что оставление электроники, такой как GPS или мобильные телефоны, подключенными к автомобильному зарядному устройству, также может разрядить аккумулятор.

Как бы хорошо вы о нем ни заботились, рано или поздно ваша батарея разрядится, и вам потребуется ее замена. Неисправные батареи обычно имеют очевидные симптомы, которые позволяют вам понять, что они скоро разряжаются.Медленная прокрутка при запуске указывает на то, что батарея не может обеспечить достаточную мощность для запуска двигателя, а горящая сигнальная лампа батареи на приборной панели ясно указывает на необходимость внимания. Если электроника автомобиля, такая как дистанционные замки или внутреннее освещение, случайно перестает работать, причиной может быть умирающий или разряженный аккумулятор.

Кроме того, батарейки — живые или разряженные — полны химикатов, поэтому сделайте одолжение природе и утилизируйте разряженные батарейки должным образом. Не выбрасывайте его просто в мусорное ведро, потому что, скорее всего, ваш местный автомеханик или магазин автозапчастей могут переработать его для вас.

Погода имеет значение

Спенсер ПлаттGetty Images

Температура окружающей среды оказывает значительное влияние на срок службы и производительность батареи. В большинстве автомобильных аккумуляторов для удержания заряда используется раствор жидкого электролита, на который влияет жаркая или холодная погода. Несмотря на то, что для замерзания батареи требуются чрезвычайно низкие температуры, холод снижает способность раствора передавать полную мощность (именно поэтому зимой может быть трудно завести автомобиль).Существует заблуждение, что покупка батареи с более высоким рейтингом CCA (усилитель холодного пуска) исправит это, но, поскольку автомобильные компьютеры регулируют силу тока, необходимую для запуска, на самом деле это не будет иметь никакого значения. Вместо этого используйте аккумуляторный обогреватель — это как поджаренная куртка, которая сохранит вашу батарею теплой и надежной всю зиму.

С другой стороны, жаркая погода может привести к испарению раствора батареи, что ограничит ее способность удерживать заряд. Если это произойдет, вы можете почувствовать запах тухлых яиц из-за серы в растворе.Распространенный миф заключается в том, что вы можете просто наполнить его водопроводной водой, чтобы компенсировать испарение, но водопроводная вода содержит минералы и примеси, которые могут повредить аккумуляторные элементы. Вместо этого используйте деионизированную или деминерализованную воду, но если вам приходится это делать, это, вероятно, признак того, что вам скоро понадобится замена. Хранение вашего автомобиля в гараже помогает аккумулятору справляться с экстремальными температурами, поэтому он служит дольше и работает более надежно.

Легкий старт

Грег CeoGetty Images

Почти каждому водителю приходится иметь дело с разряженным аккумулятором, и запуск двигателя от внешнего источника обычно является самым простым способом его подзарядки. Перед тем, как завести машину, прочтите руководство по эксплуатации. Процесс аналогичен для большинства автомобилей, но для вашего конкретного автомобиля могут быть особые соображения.

Во-первых, чтобы завести автомобиль, вам понадобится набор соединительных кабелей, резиновые рабочие перчатки, пара защитных очков и еще один автомобиль с полностью заряженным аккумулятором того же напряжения, что и машина, на которой совершается прыжок. Ознакомьтесь с некоторыми из наших любимых инструментов ниже:

    G & F Products Резиновые латексные перчатки

    Продукты G & F Амазонка.ком

    Завести автомобиль от внешнего источника относительно просто, но все же важно точно следовать этим шагам:

    1. Припаркуйте автомобили достаточно близко, чтобы соединительные кабели доставали до каждой батареи.
    2. Убедитесь, что каждое транспортное средство находится в положении «Парковка» или «Нейтраль».
    3. Выключите автомобиль с исправным аккумулятором.
    4. Выключите или отсоедините любую электронику, включая фары, аварийные огни, радиоприемники или зарядные устройства для мобильных телефонов в каждом автомобиле.
    5. Откройте капот каждого автомобиля и наденьте рабочие перчатки и защитные очки.
    6. Подсоедините один конец красного (положительного) соединительного кабеля к красному положительному (+) выводу разряженного аккумулятора.
    7. Подсоедините другой конец красного (положительного) соединительного кабеля к красному положительному (+) выводу заряженной батареи.
    8. Подсоедините один конец черного (отрицательного) соединительного кабеля к черному отрицательному (-) выводу заряженной батареи.
    9. Подсоедините другой конец черного (отрицательного) кабеля-перемычки к неокрашенной металлической детали в мертвой машине, как можно дальше от аккумулятора, насколько это возможно.Это заземляет цепь и помогает предотвратить искрение.
    10. Теперь вы готовы запустить машину. Включите автомобиль с полностью заряженным аккумулятором и дайте ему поработать на холостом ходу примерно 5-10 минут. Увеличение оборотов двигателя не поможет: запуск от внешнего источника потребляет ток от исправной батареи, на которую не влияет мощность двигателя.
    11. Выключите двигатель и отсоедините кабели в обратном порядке, следя за тем, чтобы зажимы не касались металлических поверхностей.
    12. Завести машину с разряженным аккумулятором.Если он заводится, дайте ему поработать на холостом ходу не менее 20 минут или проедьте пять миль, чтобы аккумулятор мог зарядиться. Если он по-прежнему не запускается, повторите процесс.

      Запуск от внешнего источника — это один из способов снова завести автомобиль, но помните, что каждый раз, когда аккумулятор полностью разряжается, срок его службы сокращается. По крайней мере, генератору придется работать больше, чтобы перезарядить разряженную батарею, что снижает экономию топлива.

      Дело не всегда в батарее

      Westend61Getty Images

      Если ваш автомобиль не заводится, скорее всего, виноват разрядившийся аккумулятор. Однако существует множество компонентов, которые могут вызывать подобные симптомы. Неисправный стартер издает щелчок при повороте ключа, похожий на разряженный аккумулятор. Если генератор выйдет из строя, аккумулятор не будет заряжаться при работающем двигателе, что приведет к невозможности запуска. Засоренные топливные форсунки или изношенные свечи зажигания могут быть проблемой, а коррозия на клеммах аккумулятора, которая препятствует протеканию электричества, также является распространенным явлением. К счастью, его легко очистить проволочной щеткой или стальной мочалкой.

      С ростом популярности полностью электрических транспортных средств есть большая вероятность, что ваш следующий автомобиль будет полностью питаться от аккумуляторов. Но до тех пор, следуйте этим шагам, чтобы сохранить ваш нынешний пожиратель газа в форме, чтобы вам никогда не приходилось разрывать соединительные кабели.


      Смотреть это:
      Алекс Линс Алекс Линс — ведущий писатель YourMechanic. com.

      Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

      Сколько времени занимает зарядка автомобильного аккумулятора? [Легкий калькулятор] — Банк домашних аккумуляторов

      Если вам недавно понадобился «прикуриватель», чтобы запустить автомобиль, или при повороте ключа все работает немного вяло, возможно, самое время на время подключить аккумулятор к специальному зарядному устройству, чтобы зарядить автомобильный аккумулятор. вернуться к оптимальному здоровью.

      Вопрос, который возникает у многих людей, заключается в том, сколько времени потребуется для зарядки автомобильного аккумулятора, чтобы они либо знали, когда смогут вернуться в дорогу, либо знали, когда отключить зарядное устройство, чтобы не не портит аккумулятор от перезарядки.

      Если вы просто ищете быстрый и простой ответ, я дам вам информацию ниже.

      Как правило, автомобильный аккумулятор можно зарядить за 2–6 часов с помощью зарядного устройства подходящего размера, в то время как сильно разряженный аккумулятор может занять от 10 до 15 часов. Зарядное устройство на 5 ампер — отличный вариант для автомобильных аккумуляторов.

      ⬇⬇⬇ НУЖНА ПОМОЩЬ В ЗАРЯДКЕ ЭЛЕКТРОМОНТАЖА? ⬇⬇⬇

      Эта статья посвящена газовым автомобилям.Если вы здесь, чтобы узнать, сколько времени требуется для зарядки электромобиля (EV), у меня есть полная статья здесь.

      Если вы хотели узнать, сколько времени потребуется ВАШЕЙ батарее для зарядки в ВАШЕЙ конкретной ситуации, то я призываю вас продолжать читать и использовать простые калькуляторы в этой статье, чтобы найти ответ. Это будет просто, обещаю!

      Вот видео, которое я сделал, чтобы быстро показать вам, как использовать калькуляторы, чтобы найти время зарядки для ваших конкретных обстоятельств!