Ремонт деталей и узлов двигателя
Как вы думаете, — что может быть общего между человеком и двигателем автомобиля? Когда человек маленький, он не может говорить и пожаловаться на то, что его беспокоит. Вырастая, мы начинаем говорить и сообщать о проблемах в организме.
Когда двигатель автомобиля новый, то ему не о чем нам сообщать. Он работает «как часы», но с возрастом двигатель начинает сообщать нам о проблемах «внутри себя». Как? Первое, что мы можем услышать – это стук двигателя. Вернее, стук деталей, расположенных внутри головки блока цилиндров или в самом блоке цилиндров.
Стук в двигателе может происходить по разным причинам, возникать при заводке, и пропадать после прогрева. Это может стучать и распредвал, и коленвал и т.д. Одной из причин появившегося стука может являться зазор между поршнем и цилиндром. Вот именно об этом сегодня и речь.
Важно помнить, как бы мы не хотели услышать стук в двигателе, он, рано или поздно, появится, и нужно быть готовым к этому неприятному явлении.
Почему изменяется зазор между поршнем и цилиндром
Да, а почему? Вроде бы и эксплуатация двигателя проходит в штатных условиях. И моторное масло заливаем в соответствие с рекомендациями производителя. То есть не жалеем денег, лишь бы двигатель был «накормлен» тем, что сказали давать производители.
- даже процесс правильной эксплуатации двигателя не сможет снять с повестки дня объективных причин увеличения зазора между поршнем и цилиндром. Не забывайте, что все детали двигателя работают в условиях экстремальных, а именно, в постоянно высоком температурном режиме. Естественного изменения свойств металла никак не избежать. Отодвинуть по времени можно, а избежать нельзя. У поршня происходит естественный износ канавок для колец, отверстия под палец, юбки поршня;
- неисправности, возникающие в процессе эксплуатации. Незафиксированный перегрев двигателя, нарушение регулировки движущихся деталей, перекос цилиндров, некачественное масло, попадание топлива или охлаждающей жидкости в масло и т.
д.
Эти и другие причины подводят нас к тому, что зазор между поршнем и цилиндром отклоняется от заданных параметров.
Результат нарушения зазора между поршнем и цилиндром
Увеличившийся зазор между поршнем и цилиндром приводит к стуку, ухудшению компрессии двигателя, перерасходу масла, и к выходу из строя двигателя. Уменьшение зазора между цилиндром и поршнем ведет к появлению задиров на зеркале цилиндра, перегреву деталей блока.
И в том и в другом случае требуется ремонт поршневой группы. Без вариантов. Или, если есть желание, подумайте о покупке нового двигателя. Но, всё же, дешевле вовремя провести ремонт цилиндров и поршней. А ремонт будет заключаться в замене цилиндров и расточке или хонинговке цилиндров.
Как проверить зазор между поршнем и цилиндром
Естественно, всё начинается с разборки головки блока цилиндров. По — большому счёту вы приступаете к капитальному ремонту двигателя. Ведь в результате диагностики, обязательно «выползут» проблемы с распредвалом, коленвалом, замена прокладок, подшипников, вкладышей и т. д. работы хватит. Но, начнём с того, с чего начали – замер зазора между поршнем и цилиндром.
Нам понадобятся два измерительных инструмента: нутромер – для измерения внутреннего диаметра цилиндра, и микрометр – для измерения диаметра поршней. Не станем распылять наше внимание на структуру материалов и технологию изготовления поршней. Перейдём к замеру зазора.
Как и цилиндры, поршни по своему наружному диаметру распределены на 5-ть классов: A, B, C, D, E. Замер диаметра поршня проводится в районе цилиндрической части юбки, на расстоянии от днища плоскости в 52,4 мм. Класс нашего поршня вы увидите на днище. Клеймо с соответствующей буквой.
Измерение диаметра цилиндра производится в четырёх поясах и в двух плоскостях, перпендикулярных друг другу (вдоль и поперек блока цилиндров). Если измерив, вы получаете зазор между поршнем и цилиндром выше 0,15 мм, то нужно приступать к подбору ремонтных поршней.
При условии, что зеркало цилиндра никоим образом не нарушено, подбираем поршни. Если же на зеркале цилиндра существуют механические повреждения, то вначале производится расточка или хонингование цилиндров. При этом не следует забывать, что расточка проводится до размера к ближайшему ремонтному размеру поршня.
После проведенного ремонта цилиндров, подбираем поршни соответствующего ремонтного размера. Для классических моделей двигателей отечественного производства, существует норма монтажного зазора между поршнем и цилиндром: 0,06 – 0,08мм (для 05 и 06 двигателей) и 0,05 – 0,07 (для 01 и 03двигателя).
Немаловажно, чтобы при подборе поршней вы обратили внимание и на их вес. Масса поршней одного двигателя не должна отклоняться на 2,5 грамма. Этот показатель важен для того, чтобы уменьшить вибрацию двигателя при разности масс возвратно-поступательного движения.
Ремонтные размеры поршней и цилиндров, а также нормы производителя к зазорам именно для вашего двигателя нужно уточнять в Руководстве по эксплуатации и ремонту именно вашей модели двигателя.
Удачи вам при измерении зазора между поршнем и цилиндром, и правильном подборе ремонтных деталей.
Зазор между поршнем и цилиндром — в чем секрет неисправности?
Как только вы завели двигатель и вам послышался звук, похожий на стук, а потом, когда двигатель прогрелся он пропал, либо немного стих, это значит, что пришла пора для проверки зазора между поршнями и цилиндрами. А это говорито том, что в руки нужно взять в руки инструмент и начать разбирать ГБЦ.
По Вашему мнению может ли быть что-то общее между человеком и мотором машины. Маленький человек, не может вам рассказать или пожаловаться вам на какую-то боль или беспокойство. Только по стечению времени он начинает говорить и может вам что-то объяснить. Точно так и мотор машины, когда он новый, он работает и ему ничего не мешает. Но опять же проходит какой-то промежуток времени и он начинает сообщать о каких-либо проблемах. Это можно понять по звуку издаваемому им. А точнее по стуку деталей которые находятся внутри.
У этого стука могут быть разные проблемы происхождения. Это может как распредвал так и коленвал стучать или какие-либо другие детали. Как упоминали ранее возможно это зазор между поршнем и цилиндром. Именно о такой проблеме двигателя пойдет сегодня речь. Нужно знать, что рано или поздно стук появится и эту проблему необходимо будет решать, а не откладывать на потом.
Какие изменения могут быть с зазором между поршнем и цилиндром
При правильной эксплуатации мотора со временем естественным путем сужается зазор между этими деталями. Происходит это из-за того, что во время эксплуатации при высоких температурах работают детали. Помимо этого, еще причинами возникновния такой проблемы являются неправильное регулирование движущихся деталей, перегрузки температуры, перекос цилиндров. Вы знаете то, что блоки цилиндров изготавливают чаще всего из аллюминиевого материала, у которых преобладает двойной коэффициент расширения, в сравнении с легированным чугуном.
Причиной уменьшения зазора между описываемыми деталями, является полусухое трение, из-за чего увеличивается температура деталей блока цилиндров. Со временем смазка пропадает и зазор исчезает из-за появления задир на поршне.
Для определения состояния блока цилиндров проводят диагностику, после которой выносят вердикт о ремонте цилиндров и элементов поршневой группы мотора. Но полностью сказать на сколько поршни, гильзы и другие детали деформировались можно при полном разбирании ГБЦ. Если вы дошли до поршневой группы можно начинать дефектовку цилиндров и поршней. Приборы которыми измеряют диаметры называются микрометр применяют для поршней, а нутрометр применяют при измерении диаметров цилиндров.
Существуют ли какие-то нормы соответствия поршней и цилиндров
Перед началом ремонта поршневой группы, вам нужно узнать о том, что бывают группы диаметров поршней, и таблицы в которых указаны номинальные размеры цилиндров и поршней. Именно этими знаниями нужно пользоваться при ремонте. Существует определенная классификация поршней в зависимости от наружного диаметра, их всего пять: А, В, С, D, E через каждый 0,01 миллиметр размера. К этому еще категории размеру отверстия под поршневой палец через каждые 0,004 миллиметра. Эти данные в форме цифры — это категория отверстия, а буквы – это класс поршня, они написаны на днище поршня. Расстояние между поршнем и цилиндром должно соответствовать определенным расчетным нормам. Норма для новеньких деталей считается от 0,05 до 0,07 мм. А для деталей бывших в использовании зазор должен быть не более 0,15 мм.
В общем-то для этого и делается промер зазора между поршнем и цилиндром, чтобы купить поршни такого класса, какого и цилиндры. Но может быть и так, что зазор превышает размер 0,15 мм, то нужно подобрать поршень к цилиндру, с наибольшим близким значением к расчетному размеру. Сначала нужно делать расточку цилиндров с максимальным приближением близкому к цифрам ремонтного размера. Но еще необходимо не забыть оставить припуск около 0,03 миллиметра для хонингования поверхности цилиндров после расточки. Только после этого всего можно приобретать поршни. Во время хонингования нужно выдерживать диаметр, чтобы при устанавливании поршня зазор входил в пределы допускаемой максимальной цифры зазора новых деталей 0,045 миллиметров.
Микрометр служит для определения размера поршней, а нутрометр для определения размера цилиндров. При покупке поршней к цилиндрам нужно учитывать не только номинальный или ремонтный размер, а также нужно знать и вес поршней. Он может быть нормальным, а может больше или меньше на пять грамм. К ремонтным поршням нужно подбирать ремонтные кольца ремонтных размеров. Только после всех нужных проведенных манипуляций с зазором между этими деталями, вы быстро подберете необходимые размеры, и после растачивания установите поршень.
Причины изменения зазора между поршнем и цилиндром
Почему так происходит? Вроде бы стараешься эксплуатировать двигатель согласно инструкции. Масло моторное заливаем как советует производитель. Не жалеем денег на то чтобы двигатель был всегда «накормлен», так как говорят производители.
Но все же есть причины изменения зазора:
Даже во время правильной эксплуатации мотора, не может вам с точностью объяснить почему появляется увеличение зазора между этими двумя деталями. Нужно помнить, что все детали работают в экстремальных условиях, то есть при высоких температурах. Поэтому избежать изменения свойств металла не получится, можно только отодвинуть не надолго, но избежать не удастся. У поршня со временем начинают изнашиваться естественным путем канавки для колец, отверстия под палец и др.
Причинами могут стать неисправности появляющиеся во время эксплуатации мотора: перегрев мотора незафиксированный, не правильно урегулированные движущиеся детали, перекос мотора, плохого качества моторное масло, попадание в моторное масло топлива или охлаждающей жидкости и другие причины. Все эти возникающие проблемы приводят к образованию такого зазора, который не соответствует заданным параметрам.
К чему может привести возникшая проблема зазора между поршнем и цилиндром
Увеличенный по размерам зазор может привести к стуку, к плохой компрессии мотора, увеличению расхода масла, и к поломке двигателя. А вот уменьшенный зазор может привести к появлению задир на цилиндрах, перегреву деталей блока. Как при увеличении зазора, так и при его уменьшении понадобится ремонтировать поршневую группу. Тут без вариантов. Можно конечно задуматься о приобретении нового мотора. Но дешевле будет если сделать ремонт такого рода поломки. Весь процесс будет исходить из замены цилиндров и их расточке и хонинговании.
Как самостоятельно проверить зазор между поршнем и цилиндром
Конечно, чтобы проверить зазор, необходимо для начала разобрать ГБЦ. В общем то вы начинаете капитальный ремонт мотора. Так как по результатам диагностики скорее всего появятся проблемы с распредвалом, коленвалом, заменой прокладок, подшипников, вкладышей, работы вам будет предостаточно. Но сегодня мы рассматриваем зазор между цилиндрами и поршнями. Для начала нам необходимы для измерительных инструмента: нутрометр и микрометр. Для чего они нужны мы упоминали ранее. Останавливаться на структуре материала и технологии изготовления деталей мы не станем. Начнем измерять размеры поршней.
Как и у цилиндров, у поршней тоже есть классификация по наружному диаметру и их пять классов: A, B, C, D, E. Замерять диаметр поршня нужно в районе цилиндрической части юбки, расстояние от днища плоскости в 52,4 миллиметра. Класс поршня вы разгледите на днище поршня. Расстояние между поршнем и цилиндром должно соответствовать определенным расчетным нормам. Для новых деталей нормой считается от 0,05 до 0,07 мм. А для деталей бывших в использовании зазор должен быть не больше 0,15 мм.
В общем-то для этого и делаются промеры, чтобы купить поршни такого класса, какого и цилиндры. Но возможно и следующее, что зазор превышает размер 0,15 миллиметров, то необходимо подобрать поршень к цилиндру, с наибольшим приближенным значением к расчетному размеру. Сначала нужно делать расточку цилиндров к максимально близкому по цифрам ремонтному размеру. Также не нужно забывать оставлять припуск около 0,03 миллиметра для хонингования поверхности цилиндров после растачивания. Только после этого всего можно приобретать поршни. Как только вы сделали ремонт цилиндров, начинаем подбирать поршни нужного ремонтного размера. Для обычных моделей моторов отечественного производства, норма монтажного зазора между этими двумя деталями следующая: 0,06-0,08 миллиметров для двигателей 05 и 06, а 0,05-0,07 для двигателей 01 и 03.
Обязательно при покупке поршней необходимо уделить внимание на их массу. Вес одного поршня двигателя не должен быть меньше или больше на 2,5 грамм. Это нужно для того чтобы снизить вибрацию мотора при разности масс возвратно-поступательного движения. Все необходимые размеры поршня и цилиндра, а также нормы производителя к зазорам для того мотора который у вас можно узнать из руководства по эксплуатации именно вашего типа мотора. Желаем удачи вам при проведении замеров зазора между поршнем и цилиндром, а также в правильном выборе необходимых деталей.
Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.
Была ли эта статья полезна?
auto.today
Ремонт поршневого пальца
Поршневые пальцы с износом по диаметру более 0,5 мм подлежат замене, а с износом менее 0,5 мм восстанавливаются путем перешлифовывания на меньший размер (если палец был увеличенного ремонтного размера), хромированием или раздачей.
Палец шлифуют на круглошлифовальном или токарном станке при помощи специального супортно-шлифовального приспособления. Это приспособление состоит из электродвигателя со шлифовальным камнем, оно укрепляется в супорте токарного станка.
Первоначальный размер пальца восстанавливают хромированием его или раздачей. Раздачу производят в специальном приспособлении, состоящем из основания, матрицы и оправки (пуансона). Палец нагревают до температуры 800-900° и устанавливают в матрицу, затем внутри пальца под давлением пресса или ударами молотка прогоняется оправка.
Отремонтированный или новый поршневой палец подбирают по втулке шатуна и отверстиям бобышек поршня.
Особенности устройства
Комплектовка и сборка поршня с шатуном двигателя ВАЗ
Поршень изготовлен из алюминиевого сплава и покрыт слоем олова для улучшения прирабатываемости. Юбка поршня в поперечном сечении овальная, а по высоте коническая. Поэтому измерять диаметр поршня необходимо только в плоскости, перпендикулярной поршневому пальцу и на расстоянии 52,4 мм от днища поршня.
Отверстие под поршневой палец смещено от оси симметрии на 2 мм в правую сторону двигателя. Поэтому для правильной установки поршня в цилиндр около отверстия под поршневой палец имеется метка «П», которая должна быть обращена в сторону передней части двигателя.
Поршни ремонтных размеров с 1986 г. для всех моделей двигателей изготавливаются с увеличенным на 0,4 и 0,8 мм наружным диаметром. До 1986 г. выпускались поршни следующих ремонтных размеров: для двигателей 2101 и 2103 – с увеличением на 0,2; 0,4 и 0,6 мм; для 2105 и 21011 -с увеличением на 0,4 и 0,7 мм.
Поршневые кольца изготовлены из чугуна. Наружная поверхность верхнего компрессионного кольца хромирована и имеет бочкообразную форму. Нижнее компрессионное кольцо – скребкового типа (с выточкой по наружной поверхности), фосфатированное. Маслосъемное кольцо имеет прорези для снимаемого с цилиндра масла и внутреннюю витую пружину (расширитель).
Поршневой палец – стальной, трубчатого сечения, запрессован в верхнюю головку шатуна и свободно вращается в бобышках поршня.
Шатун – стальной, кованый, с разъемной нижней головкой, в которой устанавливаются вкладыши шатунного подшипника. Шатун обрабатывается вместе с крышкой, поэтому при сборке цифры на шатуне и крышке должны быть одинаковы.
Расчетный зазор между поршнем и цилиндром (для новых деталей) равен 0,05-0,07 мм. Он определяется промером цилиндров и поршней и обеспечивается установкой поршней того же класса, что и цилиндры. Максимально допустимый зазор (при износе деталей) – 0,15 мм. Примечание. Диаметр поршня измеряется в плоскости, перпендикулярной поршневому пальцу, на расстоянии 52,4 мм от днища поршня.
Если у двигателя, бывшего в эксплуатации, зазор превышает 0,15 мм, то необходимо заново подобрать поршни к цилиндрам, чтобы.зазор был возможно ближе к расчетному.
В запасные части поставляются поршни классов А, С, Е. Этих классов достаточно для подбора поршня к любому цилиндру при ремонте двигателя, таккак поршни и цилиндры разбиты на классы с небольшим перекрытием размеров.
Сборка . Перед сборкой подберите палец к поршню и шатуну. У новых деталей класс отверстий под палец в шатуне и поршне должен быть идентичен классу пальца. У деталей бывших в эксплуатации, для правильного сопряжения необходимо, чтобы поршневой палец, смазанный моторным маслом, входил в отверстие поршня или шатуна от простого нажатия большого пальца руки и не выпадал из него. Выпадающий палец замените другим, следующей категории. Если в поршень вставлялся палец третьей категории, то замените поршень палец и шатун.
Сборка шатунно-поршневой группы выполняется в порядке, обратном разборке. После установки поршневого пальца смажьте его моторным маслом через отверстия в бобышках поршня. Поршневые кольца устанавливайте в следующем порядке. Смажьте моторным маслом канавки на поршне и поршневые кольца. Ориентируйте поршневые кольца так, чтобы замок верхнего компрессионного кольца располагался под углом 45° к оси поршневого пальца, замок нижнего компрессионного кольца – под углом приблизительно 180° к оси замка верхнего компрессионного кольца, а замок маслосъемного 1 кольца – под углом приблизительно 90° к оси замка верхнего компрессионного кольца Нижнее компрессионное кольцо устанавливайте выточкой вниз.
Проверка зазора между поршнем и цилиндром
Если утром, когда вы запустили холодный двигатель, был слышен металлический стук, который исчез при прогреве мотора, то это говорит только о том, что был нарушен зазор между поршнем и цилиндром. Почему он нарушается, и какие допустимые нормы применяются для зазоров между поршнем и цилиндром? Ответ вы найдете ниже.
Как меняется зазор между поршнем и цилиндром в процессе эксплуатации?
Уменьшение зазора происходит из-за естественного износа рабочих частей поршня и цилиндра. Такое изменение формы металла связано с его свойством поддаваться влиянию перепадов температур.
Помимо этого, уменьшение зазора может произойти и при неправильной сборке двигателя. Например, нарушена установка шатунов или появился перекос цилиндров. Не в стороне остается и перегрев двигателя, так как большие температуры имеют свойство расширять материалы. Особенно это касается алюминия, который, в отличие от чугуна, имеет высокий коэффициент расширения.
Как и любой другой дефект, нарушение зазора между поршнем и цилиндром оказывает негативное влияние на работу двигателя. Соприкосновение поршня и цилиндра под неправильным углом приводит к возникновению сухого трения, которое осуществляется без смазочного материала и повышает температуру деталей. Последствием такого трения почти во всех случаях становится появление различных царапин на рабочих поверхностях цилиндров.
После этого, любой двигатель обязательно подвергнут ремонту. Для проведения диагностики необходимо полностью снять головку блока цилиндров и как только поршневая группа будет на виду, то можно приступать к соответствующим замерам. В процессе замеров вам понадобятся микрометр, который покажет зазор поршней и нутромер для определения диаметра цилиндра.
Как снять головку блока цилиндров?
1. В первую очередь, необходимо обездвижить автомобиль. Под колеса устанавливаются противооткатные упоры, а рычаг КПП устанавливается в положение «первая передача». Откройте капот автомобиля и найдите место расположения ГБЦ.
2. Вначале, снимаются все части, которые мешают свободному доступу к головке. Таковыми могут быть: воздушный фильтр, карбюратор (или инжектор), «штаны», а также различные тросы, приводы педалей и проводка электрических датчиков. С ГБЦ выкручиваются свечи, при необходимости, снимается трамблер.
3. Слейте масло из двигателя и охлаждающую жидкость. Откройте крышку привода ГРМ и демонтируйте ремень. Это нужно для того, чтобы освободить распределительный вал. После этого, открутите гайки крепления крышки ГБЦ и снимите ее вместе с прокладкой. Перед сборкой рекомендуется установить новую прокладку.
4. Теперь можно приступать, непосредственно, к демонтажу головки блока цилиндров. Открутите специальные болты крепления и демонтируйте головку вместе с прокладкой. После этого, вы получите открытый доступ к блоку цилиндров.
Какие существуют нормы зазоров между поршнями и цилиндрами
Перед проведением соответствующего ремонта поршневого механизма, необходимо знать, что существуют определенные нормы зазоров, которые расписаны по таблицам и должны соблюдаться в строгой форме.
Диаметр поршней разделяется всего на пять классов: A B C D E. Каждый новый класс определяет увеличение диаметра на 0,01 миллиметра. Кроме того, имеются специальные категории, которые определяют диаметр отверстия под поршневой палец. Они меняются на каждые 0,004 миллиметра. Все эти цифры и маркировка, в обязательном порядке маркируется на нижней части поршня.
Для различных деталей существуют соответствующие нормы. Так, например, новые поршни должны устанавливаться с зазором 0,06 миллиметров по всей его окружности. Если же деталь уже прошла достаточно внушительный километраж, то ее зазор не должен быть больше 0,15 миллиметров.
В случаях, когда зазор начинает превосходить установленные нормы, то следует подобрать и приобрести те поршни, которые обеспечат требуемую зазорность. Совсем необязательно подгонять поршень с высокой точностью. Достаточно лишь иметь образец с приблизительными размерами.
Предварительно, необходимо в обязательном порядке расточить цилиндры до ремонтных размеров и оставить запас, примерно, в 0,03 миллиметра. Он необходим для дальнейшего хонингования поверхности. Во время хонингования обязательно выдерживайте точность диаметра, чтобы при монтаже нового поршня зазор соответствовал требованиям, предъявляемым к установке новых деталей.
Диаметр цилиндра замеряется в четырех поясах, а также в двух перпендикулярных плоскостях. Нутромер необходимо устанавливать строго перпендикулярно блоку цилиндров. Таким образом, можно исключить любые отклонения от правильности измерений.
Видео — Как правильно замерять поршень
Помимо размеров поршней, немало важным показателем является и их масса. Масса поршней бывает нормальная, или с изменением на плюс (минус) 5 грамм. Кроме того, к поршням необходимо правильно подобрать маслосъемные кольца, которые должны быть ремонтных размеров.
После того, как поршни будут подобраны и установлены, необходимо еще раз проверить величину зазоров. Если она находится в пределах нормы, то можно приступать к обратной сборке двигателя. Устанавливается ГБЦ, затем привод газораспределительного механизма. После этого, прикручивается крышка ГБЦ с новой прокладкой и все навесные элементы. Не забудьте залить масло, ОЖ и отрегулировать механизм газораспределения. После этого, скорее всего, придется выставить угол опережения зажигания. Теперь автомобиль полностью готов к работе.
На этом проверка зазора между поршнем и цилиндром завершена. Какой бы простой вам не казалась эта сложная процедура, ее, все же, рекомендуется производить только в специализированных станциях технического обслуживания, так как сборка блока цилиндров – дело ответственное и лучше доверить его профессионалам. Удачи на дорогах!
VipWash.ru
Проверка цилиндров, поршней и поршневых колец
Проверьте стенки цилиндра на наличие царапин, шероховатостей или гребней, что указывает на чрезмерный износ. Если стенки цилиндра неровные или имеют глубокие царапины, цилиндр требует расточки до ремонтного размера и установки поршней увеличенного диаметра.
Рис. 2.137. Схема измерения и измерение диаметра цилиндра в продольном и поперечном направлении двигателя: a – 50 мм; b – 95 мм |
Используя нутромер 1, измерьте диаметр цилиндра в продольном и поперечном направлении двигателя в двух положениях («a» и «b»), как показано на рисунке 2.137. При наличии любого из следующих условий расточите цилиндр. Диаметр цилиндра превышает предельное значение. Разность диаметров в двух положениях (см. выше) превышает допуск конусности. Разность диаметров в продольном и поперечном направлении двигателя превышает допуск овальности. Номинальное значение: 78,000–78,014 мм. Предельное значение: 78,114 мм. Допуск конусности и овальности: 0,10 мм.
При необходимости расточки любого из четырех цилиндров, при ремонте двигателя все четыре цилиндра должны растачиваться до одного и того же следующего ремонтного размера. Это необходимо для однородности и баланса. |
Проверьте поршень на наличие повреждений и трещин. Поврежденный или дефектный поршень должен быть заменен.
Рис. 2.138. Измерение диаметра поршня |
Как показано на рисунке 2.138, диаметр поршня должен измеряться в положении «a» от конца юбки поршня в направлении, перпендикулярном поршневому пальцу. Стандартный размер: 77,953–77,968 мм. Стандартный размер (новый (с покрытием)): 77,969–77,984 мм. Увеличенный размер 0,50 мм: 78,453–78,468 мм. Зазор между поршнем и цилиндром Измерьте диаметр цилиндра и диаметр поршня, разность указанных размеров представляет собой величину зазора между поршнем и цилиндром. Зазор между поршнем и цилиндром должен быть в пределах нормы. Если зазор отличается от нормы, расточите цилиндр и используйте поршень увеличенного ремонтного размера.
Рис. 2.139. Измерение зазора между поршнем и цилиндром |
Номинальное значение: 0,032–0,061 мм. Номинальное значение (поршень с покрытием (новый)): 0,016–0,045 мм. Предельное значение: 0,161 мм. Зазор между поршневым кольцом и канавкой
В этом случае диаметр цилиндра измеряется в осевом направлении двигателя в двух положениях. |
Зазор между поршневымкольцом и канавкой Проверка производится при чистых, сухих и свободных от нагара поршневых канавках. Установите новое поршневое кольцо 1 в поршневую канавку и измерьте зазор щупом 2.
Рис. 2.140. Измерение зазора между поршневым кольцом и канавкой: а – 19,5 мм |
Если зазор – отличается от нормы, замените поршень. Чтобы измерить зазор в замке поршневого кольца, установите поршневое кольцо 1 в цилиндр, а затем измерьте зазор щупом 2. Если измеренный зазор отличается от нормы, замените кольцо.
Рис. 2.141. Измерение зазора в замке поршневого кольца: а – 120 мм |
Удалите нагар и очистите верхнюю часть цилиндра перед установкой поршневого кольца. |
Зазор в замке поршневого кольца
carmanz.com
Дефектовка деталей двигателя
Детали шатунно-поршневой группы показаны на рис. 1.
Рис. 1. Детали шатунно-поршневой группы:
1 – поршень; 2 – поршневой палец; 3 – шатун; 4 – вкладыши; 5 – крышка шатуна; 6 – болты крепления крышки шатуна; 7, 9 – маслосъемные кольца; 8 – расширитель маслосъемных колец; 10 – нижнее компрессионное кольцо; 11 – верхнее компрессионное кольцо
Вам потребуются: переносная лампа, набор плоских щупов, линейка, штангенциркуль, нутромер, микрометр, шабер.
1. Очистите головку поршня от нагара. Если на поршне есть задиры, следы прогара, глубокие царапины, трещины, замените поршень. Прочистите канавки под поршневые кольца. Это удобно делать обломком старого кольца.
2. Подходящим куском проволоки прочистите в поршне отверстия для стока масла.
3. Проверьте на поршне зазоры между кольцами и канавками, предварительно очистив кольца от нагара. Зазоры должны быть следующими:
- 0,04–0,075 мм для верхнего компрессионного кольца;
- 0,03–0,07 мм для нижнего компрессионного кольца;
- 0,03–0,13 мм для маслосъемного кольца.
Так расположены кольца на поршне:
А — верхнее компрессионное кольцо;
Б — нижнее компрессионное кольцо;
В — маслосъемное кольцо.
4. Наиболее точно зазоры можно определить замером колец и канавок на поршне. Для этого замерьте микрометром толщину колец в нескольких местах по окружности, затем с помощью набора щупов замерьте ширину канавок также в нескольких местах по окружности. Вычислите средние значения зазоров (разница между толщиной кольца и шириной канавки). Если хотя бы один из зазоров превышает предельно допустимое значение, замените поршень с кольцами.
5. Осмотрите цилиндры с обеих сторон. Царапины, задиры и трещины не допускаются.
При осмотре рекомендуем освещать зеркала цилиндров переносной лампой, так дефекты видны значительно лучше.
6. Измерьте зазоры в замках колец, вставив кольцо в специальную оправку. При отсутствии оправки вставьте кольцо в цилиндр, в котором оно работало (или будет работать, если кольцо новое), продвиньте поршнем как оправкой кольцо в цилиндр, чтобы оно установилось в цилиндре ровно, без перекосов и измерьте щупом зазор в замке кольца.
Зазоры в замках колец должны быть следующими:
- 0,25–0,50 мм для верхнего и нижнего компрессионных колец;
- 0,25–0,75 мм для маслосъемного кольца.
Для того чтобы установить кольцо без перекоса, продвиньте его вглубь цилиндра поршнем.
7. Измерьте диаметр цилиндра в двух взаимно перпендикулярных плоскостях (X — вдоль, Y — поперек блока цилиндров) и в трех поясах (А, Б и В), как показано на рис. 2. Для этого необходим специальный прибор — нутромер. Номинальные размеры цилиндров приведены в табл. 1. Овальность не должна превышать 0,015 мм, конусность – 0,01 мм. Если максимальное значение износа больше 0,2 мм или овальность и конусность больше указанных значений, расточите цилиндры до ближайшего ремонтного размера поршней, оставив припуск 0,03 мм на диаметр под хонингование. Затем отхонингуйте цилиндры, выдерживая такой диаметр, чтобы при установке поршня расчетный зазор между ним и цилиндром был 0,03–0,05 мм. Дефектовку, расточку и хонингование блока проводите в мастерских, располагающих специальным оборудованием.
Рис. 2. Схема измерения цилиндра
Табл. 1. Размеры цилиндров и поршней двигателя A16 XER
Класс | Диаметр цилиндра, мм | Диаметр поршня, мм |
Номинальные размеры | ||
00 | 78,992–79,008 | 78,833–78,847 |
05 | 79,042–79,058 | 78,883–78,997 |
Ремонтный размер | ||
00+0,5 | 79,492–75,508 | 79,433–79,447 |
8. Проверьте отклонение от плоскостности поверхности разъема блока с головкой блока цилиндров. Приложите штангенциркуль (или линейку) к поверхности:
- в продольном и поперечном направлениях;
- по диагоналям поверхности.
В каждом положении плоским щупом определите зазор между линейкой и поверхностью. Это и есть отклонение от плоскостности. Если отклонение больше 0,1 мм, замените блок.
9. Проверьте зазоры между поршнями и цилиндрами. Зазор, определяемый разностью замеренных диаметров цилиндра и поршня, должен быть в пределах 0,03–0,05 мм.
Если зазор не превышает предельно допустимый, можно подобрать поршни из следующего класса, чтобы зазор был как можно ближе к номинальному. Если зазор превышает предельно допустимый, расточите цилиндры и установите поршни ремонтного размера.
Диаметр поршня измеряйте на расстоянии 19 мм от нижнего края юбки поршня в плоскости, перпендикулярной поршневому пальцу.
10. При замене деталей шатунно-поршневой группы необходимо подобрать поршни к цилиндрам по классу и одной группы по массе, поршневые пальцы к поршням по классу и шатуны по массе. Для подбора поршней к цилиндрам вычислите зазор между ними. Для удобства подбора поршней к цилиндрам их делят в зависимости от диаметров на два класса (через 0,05 мм): 00, 05 (см. табл. 1).
В запасные части поставляют поршни номинального размера двух классов и ремонтного размера, увеличенного на 0,5 мм.
Для поршней ремонтных размеров в запчасти поставляют кольца ремонтных размеров, увеличенных на 0,5 мм.
11. Поршневые пальцы с трещинами замените. Палец должен легко входить в поршень от усилия большого пальца руки. Вставьте палец в поршень. Если при покачивании пальца ощущается люфт, замените поршень. При замене поршня подберите к нему палец по зазору. Для этого измерьте диаметры отверстий в бобышках поршня…
Какой зазор должен быть на поршневых кольцах
Двигатель внутреннего сгорания фактически является тепловой машиной. В процессе работы такого двигателя целый ряд нагруженных деталей в конструкции ЦПГ и ГРМ подвергается температурному расширению в результате значительного нагрева. По этой причине для нормальной работы ДВС в отдельных конструкциях предусмотрена самостоятельная регулировка теплового зазора клапанов (при отсутствии гидрокомпенсаторов).
Рекомендуем также прочитать статью о том, что такое гидрокомпенсатор. Из этой статьи вы узнаете о назначении, устройстве и особенностях работы гидротолкателей.
Регулировать тепловые зазоры клапанов необходимо каждые 30-40 тыс. км. пробега, а также в случае появления стука клапанов на холодном или горячем двигателе. Отдельного внимания также требует тепловой зазор между поршнем и цилиндром, а точнее тепловой зазор поршневых колец.
На поршень устанавливается два типа поршневых колец:
- компрессионные кольца;
- маслосъемные кольца;
Также компрессионные кольца делятся на верхнее компрессионное и нижнее компрессионное кольцо. Задачей данных колец является герметизация камеры сгорания и предотвращение прорыва значительной части отработавших газов в картер двигателя. Маслосъемные кольца осуществляют снятие излишков моторного масла со стенок цилиндра, благодаря чему масло не попадает в камеру сгорания в избыточном количестве.
Тепловой зазор в замке поршневых колец является важным параметром, который необходимо в обязательном порядке учитывать при подборе колец в процессе их замены или комплексного ремонта ЦПГ.
Такой ремонт обычно предполагает расточку блока цилиндров, установку ремонтных поршней и колец. Указанный тепловой зазор является допуском, который учитывает расширение детали с нагревом, то есть когда происходит изменение определенных параметров. Допустимый зазор между поршнем и цилиндром является таким зазором, при котором наблюдается нормальная работоспособность всех элементов. Детали весьма плотно подогнаны друг к другу, но при этом не происходит их повреждения и заклинивания.
Другими словами, допустимый зазор поршневых колец позволяет после теплового расширения добиться такого теплового пространства (зазор между поршнем и цилиндром), при котором плотно прижатые к стенкам цилиндров поршневые кольца создают надежное уплотнение. При этом расширившиеся под воздействием высокой температуры кольца должны сохранять подвижность в канавках на поршне и создавать надежное уплотнение, при этом не препятствуя нормальному перемещению поршня. Параллельно с этим поршневые кольца должны эффективно отводить избытки тепла от нагретых поршней.
Поршневое кольцо не является цельным, так как имеет разрез (замок). Благодаря указанному разрезу удается избежать заклинивания при нагреве и достичь упругости кольца для плотного прижатия к стенкам цилиндра. После установки кольца на поршень и помещения поршня в цилиндр образуется зазор в замке поршневых колец. Такой зазор составляет 0.3- 0.6 миллиметра.
Замок поршневого кольца может быть выполнен в виде прямого или косого среза. Замок с прямым разрезом менее предпочтителен, так как в области краев среза создается сильное давление на стенки цилиндра. Данная особенность конструкции замка вызывает ускоренный износ зеркала цилиндров, после чего происходит утечка газов и повышается расход масла на угар. Увеличение зазора поршневого кольца от допустимых параметров ухудшает уплотнение. Уменьшение зазора колец может привести к их разрушению, заклиниванию или образованию задиров на стенках цилиндров.
Как влияет тепловой зазор поршневых колец на расход масла
В последнее время среди производителей наблюдается тенденция к увеличению тепловых зазоров компрессионных поршневых колец. Зазоры на таких кольцах находятся в диапазоне от 1 до 2 мм. Обычно такой увеличенный зазор актуален для второго компрессионного кольца.
Дело в том, что прижим поршневых колец (как первого верхнего, так и второго компрессионного) практически полностью зависит не от степени упругости самого кольца, а от давления, которое возникает во время сгорания заряда топливно-воздушной смеси в рабочей камере. Отработавшие газы попадают в канавки на поршне, после чего оказываются на обратной стороне колец. В результате происходит увеличение прижимного усилия колец к стенке цилиндра. Наиболее сильно газы воздействуют на первое (верхнее) компрессионное кольцо, а также влияют на прижим второго компрессионного поршневого кольца.
С учетом вышесказанного необходимо отметить, что в режиме работы двигателя на холостом ходу и малых нагрузках давление газов заметно слабее по сравнению с режимом средних и максимальных нагрузок. По этой причине компрессионные поршневые кольца не так сильно прижаты к стенке цилиндра на таких режимах работы ДВС.
Следует добавить, что второе компрессионное кольцо также частично снимает масло. Получается, недостаточное давление и слабое прилегание вызывает повышение расхода моторного масла на холостых оборотах и при минимальных нагрузках на мотор.
Для уменьшения расхода масла производители выполняют увеличение тепловых зазоров поршневых колец. Через увеличенные зазоры газы даже под относительно небольшим давлением намного активнее проникают в кольцевую канавку, после чего попадают на обратную сторону кольца.
Прижим колец улучшается, герметизация камеры сгорания остается на приемлемом уровне, при этом расход масла удается снизить. Единственным недостатком увеличенного зазора колец можно считать большее количество газов, которые попадают в картер через увеличенные зазоры.
Подведем итоги
От правильно подобранного теплового зазора поршневых колец зависит как ресурс самих колец, так и исправность работы всей ЦПГ. Естественный радиальный износ колец приводит к увеличению тепловых зазоров, после чего герметизация камеры сгорания ухудшается.
Одной из важнейших функций колец параллельно уплотнению и удалению масла является терморегуляция. Через кольца реализован отвод тепла от поршня. При увеличении теплового зазора, а также при его уменьшении данная функция выполняется менее эффективно.
Необходимо отметить, что для двигателя намного более опасен уменьшенный зазор. Если минимальный зазор в замках (тепловое пространство) сократить до показателя 0.2 миллиметра, после нагрева и выхода мотора на рабочие температуры зазор в замке может полностью отсутствовать. В результате кольцо сильно давит на стенки цилиндра, значительно возрастает износ колец, нарушается теплообмен, а также повышается риск образования задиров.
KrutiMotor.ru
Сборка шатунно-поршневой группы
Для сборки шатуна с поршнем нужно подобрать поршневой палец к втулкам верхней головки шатуна и бобышкам поршня. Для соединения с шатуном поршень нагревают в масле или в электронагревательном приборе до температуры 55 °С. При этом палец в отверстие бобышки нагретого поршня должен входить плавно от усилия большого пальца правой руки. В таком соединении после охлаждения поршня появляется необходимый натяг 0,0025 …0,0075 мм.
Затем нужно сверить порядковые номера поршней и шатунов. Шатун закрепляют в тисках, устанавливают поршень, их соединение фиксируют пальцем. Поршень при сборке с шатуном должен быть установлен так, чтобы метка на днище поршня была направлена к передней части двигателя. Бобышка, выштампованная на шатуне для левой группы цилиндров, также должна быть направлена к передней части двигателя, т.е.
После соединения и проверки шатунно-поршневой группы следует закрепить стопорными кольцами палец в бобышках поршня, затем тщательно протереть подобранные по канавкам и подогнанные к цилиндрам поршневые кольца и установить их на поршни с помощью специального приспособления. Поршни в сборе с шатуном необходимо проверить по массе.
- повернуть блок двигателя, установить его на стенде вертикально, передней частью вверх;
- последовательно, один за другим брать поршни с шатунами в сборе;
- тщательно протереть салфеткой постель под вкладыши в нижней головке шатуна;
- отвернуть гайки и снять крышку шатуна;
- установить шатун с поршнем.
Затем необходимо проверить и продуть отверстие в нижней головке шатуна, служащее для разбрызгивания масла на стенки цилиндра, вставить вкладыши в шатун и в крышку, протереть салфеткой верхние вкладыши шатуна и поршень, установить на поршень кольца, располагая внутреннюю выточку вверх, развести стыки компрессионных колец по окружности поршня примерно на 120°. После установки развести стыки компрессионных колец на 180°.
Далее следует протереть салфеткой гильзы цилиндров блока и шатунную шейку, смазать чистым маслом, применяемым для двигателя, поверхность шатунного вкладыша, поршня, поршневых колец и гильз цилиндров, вставить поршень с шатуном в цилиндр, направив метку на днище поршня к передней части двигателя с помощью специального приспособления, довести подшипники шатуна до шейки коленчатого вала, продвигая поршень по цилиндру с помощью деревянной оправки, смазать маслом шейку вала и подтянуть нижнюю головку к ней, снять предохранительные наконечники с шатунных болтов и поставить на место нижнюю крышку шатуна, закрепив ее шатунными гайками.
Перед окончанием сборки нужно проверить суммарный осевой зазор между торцами шатунов и шатунной шейки коленчатого вала с помощью щупа и окончательно затянуть болты шатунных подшипников динамометрическим ключом. После затяжки каждой пары шатунных подшипников следует проворачивать коленчатый вал. Момент прокручивания вала при правильно подобранных радиальных зазорах в подшипниках должен быть не более 100 Нм. Аналогичные операции нужно провести при установке в цилиндры остальных поршней с шатунами.
- нагар на днище и в канавках под кольцами;
- трещины и царапины на стенках;
- износ по диаметру;
- износ канавок для поршневых колец;
- износ отверстий в бобышках.
Нагар с днища удаляют тупым металлическим скребком или металлической щеткой, предварительно смочив нагар керосином.
Нагар из канавок удаляют специальным приспособлением. Наличие трещин в поршне определяют на слух, для чего поршень берут за головку, а по юбке наносят легкие удары металлическим предметом. Глухой, дребезжащий звук указывает на наличие трещин.
Поршни, имеющие большой износ по диаметру, трещины и глубокие царапины, необходимо заменить. Изношенные канавки для поршневых колец могут быть проточены под увеличенный размер колец по высоте на токарном станке при помощи приспособления, представляющего собой кольцо с наружным диаметром, равным внутреннему центрирующему пояску поршня.
На кольцо, установленное в патрон станка, надевают поршень и закрепляют его болтом с проушиной. Болт проушиной соединен с поршнем посредством поршневого пальца и проходит сквозь шпиндель станка. С обратной стороны болт закреплен гайкой. Канавки на поршне следует протачивать с учетом установленных ремонтных размеров поршневых колец.
Изношенные отверстия в бобышках ремонтируют развертыванием их под увеличенный диаметр поршневого пальца при помощи раздвижной развертки с направляющим хвостовиком. Применение коротких разверток недопустимо, так как это легко приводит к нарушению перпендикулярности оси пальца с осью поршня; поэтому после развертывания необходимо проверять перпендикулярность осей на специальном приспособлении.
Поршень надевают на палец приспособления и придвигают вплотную к стойке. При этом штифт индикатора, укрепленного к стойке, соприкасается с поршнем, и стрелка индикатора даст определенное отклонение. Заметив показания индикатора, поршень снимают и надевают на палец другой стороной. Разница в показаниях индикатора не должна превышать 0,05 мм. В противном случае поршень необходимо забраковать.
Зазор в замке поршневых колец
Принцип действия ДВС достаточно прост – сгорание топлива в нужное время в нужном цилиндре обеспечивает высвобождение энергии и ее преобразование в механическую. Но вот для его реализации требуются материалы с заданными свойствами, сложное оборудование, позволяющее получать детали требуемой формы и с заданными размерами и допусками, учет изменений характеристик узлов при различных режимах работы мотора. Одним из факторов, обеспечивающих функционирование ДВС, является необходимость выдерживать тепловой зазор поршневых колец.
Зачем нужен зазор в замке поршневых колец?
Первоначально давайте определимся, о чем идет речь. Внешний вид поршневого кольца показан на фото ниже:
Конструктивно у ДВС внутри цилиндра перемещается поршень. Именно он воспринимает избыточное давление, возникающее при сгорании топлива, и передает его на коленвал. В этом обманчиво простом описании заложены, как минимум, несколько особенностей:
- между стенкой цилиндра и движущимся поршнем надо выдержать зазор, позволяющий полностью использовать величину возникающего избыточного давления в камере сгорания;
- при этом необходимо обеспечить их минимальный контакт для снижения износа деталей;
- масло, используемое для смазки, должно создавать нормальные условия работы отдельных деталей, и в то же время надо исключить его попадание в камеру сгорания;
- необходимо обеспечить отвод тепла от поршня на стенки блока цилиндров.
Вот все эти задачи и решают поршневые кольца. Условия, в которых им приходится работать, очень сложные – значительный нагрев и механические нагрузки. Для компенсации воздействия температуры и предусматривается зазор поршневых колец.
Как работают и зачем нужны тепловые зазоры поршневых колец
Существует два типа колец – уплотнительные (компрессионные) и маслосъемные, оба показаны на приведенном рисунке
Само название говорит об их назначении:
- уплотнительные служат для обеспечения герметичности камеры сгорания, предупреждая проникновение из нее продуктов сгорания в картер двигателя;
- маслосъемные предназначены для удаления излишней смазки со стен цилиндра.
На старых, малооборотистых двигателях их стояло по пять-шесть штук (в зависимости от марки мотора), но на современных ДВС обычно используется три кольца – одно маслосъемное и два компрессионных.
Несмотря на различие в конструкции и назначении, у них есть одно общее – замок. Фактически так называется имеющийся промежуток между концами незамкнутой окружности. Говоря о замке, стоит помнить, что одно из его назначений – компенсировать тепловые расширения, возникающие в кольцах во время их работы.
Большинство материалов при нагревании удлиняется. При монолитной конструкции кольца, установленного в цилиндр двигателя, будут возникать напряжения, вызывающие его деформацию. Избежать этого позволяет свободное пространство между концами на кольцах.
Каким может быть допустимый зазор? При установке на поршень его величина в замке должна составлять от 0,6 до 0,3 мм.
Кроме того, надо знать, что требуется выдерживать допустимый боковой зазор между кольцом и стенкой. Необходимо обеспечить его значение в диапазоне от 0,08 до 0,04 мм.
Зачем это нужно? Для понимания того, как работает уплотнительное кольцо, приведен рисунок ниже.
Под воздействием давления отработанные газы, проходя в канавке между поршнем и кольцом, воздействуют с его внутренней стороны и увеличивают усилие прижима к цилиндру. Именно для подобной цели нужен зазор, в том числе тепловой, разделяющий боковые поверхности этих элементов.
Таким образом, обеспечив в замке допустимый зазор при установке колец (между их концами, а также боковой поверхностью и поршнем), будут созданы условия для нормальной работы мотора в значительном интервале температур. Кроме того, этому способствует и правильная взаимная их установка, показанная на рисунке ниже. Главное – обеспечивается разнесенное положение замков между собой.
Маслосъемные кольца ставятся ниже компрессионных. Их назначение – удалять со стенки цилиндра излишки масла. Его недостаток приведет к повышенному износу деталей, а избыток – к попаданию в камеру сгорания и образованию там нагара. Как работает такое кольцо, показано ниже.
Излишки масла снимаются со стенок цилиндра и отводятся в картер двигателя. Таким образом, поршневые кольца создают оптимальные условия для сгорания топлива в ДВС, что во многом обеспечивается их конструкцией. Кроме того, во время установки в замке создается допустимый зазор, что сохраняет их работоспособность при значительном изменении условий работы ДВС.
Конструкция современного бензинового или дизельного мотора такова, что только совместная согласованная работа отдельных узлов и механизмов позволяет получить ожидаемые характеристики. И если рассматривать сгорание топлива, то обеспечение для этого оптимальных условий зависит от поршневых колец, а также от того, насколько выдержаны тепловые зазоры в замке при установке на поршень.
ZnanieAvto.ru
Тепловой зазор поршневых колец
Двигатель внутреннего сгорания фактически является тепловой машиной. В процессе работы такого двигателя целый ряд нагруженных деталей в конструкции ЦПГ и ГРМ подвергается температурному расширению в результате значительного нагрева. По этой причине для нормальной работы ДВС в отдельных конструкциях предусмотрена самостоятельная регулировка теплового зазора клапанов (при отсутствии гидрокомпенсаторов).
Рекомендуем также прочитать статью о том, что такое гидрокомпенсатор. Из этой статьи вы узнаете о назначении, устройстве и особенностях работы гидротолкателей.Регулировать тепловые зазоры клапанов необходимо каждые 30-40 тыс. км. пробега, а также в случае появления стука клапанов на холодном или горячем двигателе. Отдельного внимания также требует тепловой зазор между поршнем и цилиндром, а точнее тепловой зазор поршневых колец.
Содержание статьи
Какой зазор должен быть на поршневых кольцах
На поршень устанавливается два типа поршневых колец:
- компрессионные кольца;
- маслосъемные кольца;
Также компрессионные кольца делятся на верхнее компрессионное и нижнее компрессионное кольцо. Задачей данных колец является герметизация камеры сгорания и предотвращение прорыва значительной части отработавших газов в картер двигателя. Маслосъемные кольца осуществляют снятие излишков моторного масла со стенок цилиндра, благодаря чему масло не попадает в камеру сгорания в избыточном количестве.
Тепловой зазор в замке поршневых колец является важным параметром, который необходимо в обязательном порядке учитывать при подборе колец в процессе их замены или комплексного ремонта ЦПГ.
Такой ремонт обычно предполагает расточку блока цилиндров, установку ремонтных поршней и колец. Указанный тепловой зазор является допуском, который учитывает расширение детали с нагревом, то есть когда происходит изменение определенных параметров. Допустимый зазор между поршнем и цилиндром является таким зазором, при котором наблюдается нормальная работоспособность всех элементов. Детали весьма плотно подогнаны друг к другу, но при этом не происходит их повреждения и заклинивания.
Другими словами, допустимый зазор поршневых колец позволяет после теплового расширения добиться такого теплового пространства (зазор между поршнем и цилиндром), при котором плотно прижатые к стенкам цилиндров поршневые кольца создают надежное уплотнение. При этом расширившиеся под воздействием высокой температуры кольца должны сохранять подвижность в канавках на поршне и создавать надежное уплотнение, при этом не препятствуя нормальному перемещению поршня. Параллельно с этим поршневые кольца должны эффективно отводить избытки тепла от нагретых поршней.
Поршневое кольцо не является цельным, так как имеет разрез (замок). Благодаря указанному разрезу удается избежать заклинивания при нагреве и достичь упругости кольца для плотного прижатия к стенкам цилиндра. После установки кольца на поршень и помещения поршня в цилиндр образуется зазор в замке поршневых колец. Такой зазор составляет 0.3- 0.6 миллиметра.
Замок поршневого кольца может быть выполнен в виде прямого или косого среза. Замок с прямым разрезом менее предпочтителен, так как в области краев среза создается сильное давление на стенки цилиндра. Данная особенность конструкции замка вызывает ускоренный износ зеркала цилиндров, после чего происходит утечка газов и повышается расход масла на угар. Увеличение зазора поршневого кольца от допустимых параметров ухудшает уплотнение. Уменьшение зазора колец может привести к их разрушению, заклиниванию или образованию задиров на стенках цилиндров.
Как влияет тепловой зазор поршневых колец на расход масла
В последнее время среди производителей наблюдается тенденция к увеличению тепловых зазоров компрессионных поршневых колец. Зазоры на таких кольцах находятся в диапазоне от 1 до 2 мм. Обычно такой увеличенный зазор актуален для второго компрессионного кольца.
Дело в том, что прижим поршневых колец (как первого верхнего, так и второго компрессионного) практически полностью зависит не от степени упругости самого кольца, а от давления, которое возникает во время сгорания заряда топливно-воздушной смеси в рабочей камере. Отработавшие газы попадают в канавки на поршне, после чего оказываются на обратной стороне колец. В результате происходит увеличение прижимного усилия колец к стенке цилиндра. Наиболее сильно газы воздействуют на первое (верхнее) компрессионное кольцо, а также влияют на прижим второго компрессионного поршневого кольца.
С учетом вышесказанного необходимо отметить, что в режиме работы двигателя на холостом ходу и малых нагрузках давление газов заметно слабее по сравнению с режимом средних и максимальных нагрузок. По этой причине компрессионные поршневые кольца не так сильно прижаты к стенке цилиндра на таких режимах работы ДВС.
Следует добавить, что второе компрессионное кольцо также частично снимает масло. Получается, недостаточное давление и слабое прилегание вызывает повышение расхода моторного масла на холостых оборотах и при минимальных нагрузках на мотор.
Для уменьшения расхода масла производители выполняют увеличение тепловых зазоров поршневых колец. Через увеличенные зазоры газы даже под относительно небольшим давлением намного активнее проникают в кольцевую канавку, после чего попадают на обратную сторону кольца.
Прижим колец улучшается, герметизация камеры сгорания остается на приемлемом уровне, при этом расход масла удается снизить. Единственным недостатком увеличенного зазора колец можно считать большее количество газов, которые попадают в картер через увеличенные зазоры.
Подведем итоги
От правильно подобранного теплового зазора поршневых колец зависит как ресурс самих колец, так и исправность работы всей ЦПГ. Естественный радиальный износ колец приводит к увеличению тепловых зазоров, после чего герметизация камеры сгорания ухудшается.
Одной из важнейших функций колец параллельно уплотнению и удалению масла является терморегуляция. Через кольца реализован отвод тепла от поршня. При увеличении теплового зазора, а также при его уменьшении данная функция выполняется менее эффективно.
Необходимо отметить, что для двигателя намного более опасен уменьшенный зазор. Если минимальный зазор в замках (тепловое пространство) сократить до показателя 0.2 миллиметра, после нагрева и выхода мотора на рабочие температуры зазор в замке может полностью отсутствовать. В результате кольцо сильно давит на стенки цилиндра, значительно возрастает износ колец, нарушается теплообмен, а также повышается риск образования задиров.
Читайте также
Поршень — RacePortal.ru
Детали шатунно-поршневой группы
1-Первое компрессионное кольцо
2-Второе компрессионное кольцо
3-Маслосъёмное кольцо
3.1-Верхнее плоское кольцо
3.2-Расширитель
3.3-Нижнее плоское кольцо
4-Поршень
5-Поршневой палец
6-Стопорное кольцо поршневого пальца (2 шт)
7-Шатун
8-Болт крышки шатуна
9-Вкладыши подшипника шатуна
10-Крышка шатуна
11-Гайка крышки шатуна
Поршень
Во время работы двигателя на поршень оказываются значительные механические нагрузки, постоянно изменяющиеся как по направлению, так и по величине. Даже во время спокойного, равномерного движения автомобиля по обычной загородной дороге коленчатый вал двигателя вращается со скоростью приблизительно 3000 об/мин, следовательно, в течение одной минуты поршень должен разогнаться до высокой скорости, остановиться и опять разогнаться в противоположном направлении 6000 раз в минуту, или 100 раз в секунду. Если принять, что средний ход поршня современного короткоходного двигателя равен 80 мм, за одну минуту поршень пройдёт 480 метров, то есть средняя скорость движения поршня в цилиндре равна 28,8 км/час. Ещё выше эти нагрузки у высокофорсированных двигателей спортивных автомобилей. Если принять, что скорость вращения двигателя спортивного автомобиля 6000 об/мин (на самом деле может быть значительно выше), в этом случае поршень изменит направление своего движения 200 раз в секунду, линейное расстояние, которое поршень пройдёт за час, будет равно 57,8 км, при этом максимальная скорость движения поршня будет равна 120 км/час. То есть в течение одной секунды, поршню необходимо 200 раз на расстоянии всего 40 мм разогнаться до 120 км/час и на таком же расстоянии снизить скорость с 120 км/час до 0. Двигатели многих спортивных автомобилей имеют максимальную скорость вращения коленчатого вала до 12000 об/мин, а двигатели болидов Формулы 1 раскручиваются до 19000 об/мин.
Можно представить какие большие инерционные нагрузки действуют на поршень, даже если просто предположить что коленчатый вал двигателя вращается от постороннего источника энергии. Но на поршень также оказывается воздействие усилия сжимаемых газов на такте сжатия и особенно полезное воздействие расширяющихся газов на такте рабочего хода. Максимальное давление в камере сгорания высокофорсированного двигателя достигает 80 – 100 атмосфер, давление в камере сгорания обычного автомобиля 55 – 60 атмосфер. И если принять, что диаметр поршня среднего автомобиля равен 92 мм, в момент максимального давления поршень испытывает усилие от 5,3 до 6,6 тонн. Так что можно сказать, что поршень автомобиля, как и другие детали кривошипно-шатунного механизма, испытывает огромные механические нагрузки. Но беда не приходит одна, кроме значительных механических нагрузок, поршень также подвергается воздействию очень высоких температур.
Откуда появляется тепло, оказывающее воздействие на поршень? Первый, но не основной, источник этот трение. Во время работы двигателя поршень перемещается с большой скоростью, при этом он постоянно трётся о стенки цилиндров. Геометрия кривошипного механизма такова, что часть силы, прикладываемой к поршню, расходуется на прижатие поршня к стенкам цилиндра. И не смотря на качественную обработку поверхностей, как цилиндра, так и поршня, даже при наличии смазки, возникает достаточно большая сила трения. Как известно из школьного курса физики, при этом выделяется большое количество тепла. Но в основном тепло, воздействующее на поршень, появляется при сгорании топливовоздушной смеси в цилиндре двигателя. Температура сгоревших в цилиндре газов может достигать 2000º — 2500ºС. Под воздействием таких высоких температур разрушаются все конструкционные материалы, из которых изготавливаются детали современных двигателей внутреннего сгорания. Поэтому необходимо отводить тепло от наиболее нагруженных в тепловом режиме деталей двигателя и, разумеется, от поршней. Общее количество тепла, выделенное во время работы двигателя, зависит от количества сгоревшего в цилиндрах двигателя топлива за единицу времени. А этот показатель, в свою очередь зависит от объёма цилиндров и от скорости вращения двигателя. Двигатель превращает в полезную механическую работу только небольшую часть энергии сгоревшего топлива. Некоторая часть тепла выводится из двигателя с горячими отработавшими газами остальноё тепло необходимо рассеять в окружающем пространств.
Опять вспоминая школьный курс физики можно сказать, что если два тела имеют разную температуру, но тепло от более нагретого тела перемещается к менее нагретому телу, пока температура обоих тел не сравняется. В автомобиле самым холодным телом, способным абсорбировать большое количество тепла, является окружающий воздух, следовательно, необходимо найти способ отвода тепла от нагретых деталей двигателя к окружающему воздуху. Поскольку весь земной шар всё равно не согреешь, можно считать, что окружающая среда способна абсорбировать любое количество тепла. Самая горячая часть поршня это его днище, поскольку оно непосредственно соприкасается с горячими рабочими газами. Далее тепло распространяется от днища поршня в направлении юбки.
Тепло от поршня отводится тремя способами: Основная часть тепла передаётся поршневыми кольцами и юбкой поршня стенкам цилиндра и далее отводится системой охлаждения двигателя. Часть тепла отводится внутренней полостью поршня и через поршневой палец и шатун, а также маслом, циркулирующим в системе смазки двигателя. Часть тепла отводится от поршня холодной топливовоздушной смесью поступающей в цилиндры двигателя.
1. Отвод тепла чрез поршневые кольца и юбку поршня. Ясно, что подвести охлаждающую жидкость, циркулирующую в системе охлаждения к поршню невозможно, поскольку поршень во время работы двигателя перемещается с большой скоростью. Но система охлаждения двигателя интенсивно охлаждает стенки цилиндров двигателя. Поэтому необходимо сконструировать поршень и поршневые кольца так, чтобы он излишнее тепло чрез поршневые кольца и юбку передавал стенкам цилиндра двигателя. Далее исправная система охлаждения двигателя выведет тепло их двигателя и передаст его окружающему автомобиль воздуху. Если это не сделать, то температура поршня превысит максимально допустимую, после чего начнётся разрушение поршня под воздействием механических нагрузок и даже его оплавление под воздействием высокой температуры. Без необходимого отвода тепла поршень, сделанный из алюминиевого сплава расплавится всего через несколько минут работы двигателя.
Отвод тепла от поршня
Поступление тепла к поршню от рабочих газов, находящихся в цилиндре двигателя
- Охлаждение поршня поступающей топливовоздушной смесью
- Отвод тепла поршневыми кольцами (50% — 70%)
- Отвод тепла юбкой поршня (20% — 30%)
- Отвод тепла через внутреннюю полость поршня (5% — 10%)
- Отвод тепла через поршневой палец и шатун
- Охлаждающая жидкость рубашки охлаждения
Из общего количества тепла, отводимого от поршня, приблизительно 50% — 60% отводится поршневыми кольцами, это накладывает очень высокие требования к конструкции и точности изготовления поршневых колец. Некоторая часть тепла отводится во внутренне пространство поршня и рассеивается во внутреннем пространстве картера или через поршневой палец передаётся на шатун и тоже рассеивается во внутреннем пространстве картера двигателя.
- Отвод тепла от поршня через поршневые кольца
- Отвод тепла поршневыми кольцами
- Камера сгорания
- Стенка цилиндра
- Рубашка охлаждения
- Поршень
- Первое компрессионное кольцо
- Второе компрессионное кольцо
- Маслосъёмное кольцо
Поскольку самой горячей частью поршня является его днище, являющейся одной из стенок камеры сгорания, тепло перемещается от верхней части поршня к нижней. При этом из всего количества тепла, отводимого от поршня, приблизительно 45% отводится первым компрессионным кольцом, по причине того, что это кольцо всего ближе расположено к самой горячей части поршня, 20% отводится вторым компрессионным кольцом и только 5% отводится маслосъёмным кольцом. Тепло, переданное поршневыми кольцами и юбкой поршня стенкам цилиндра, отводится системой охлаждения двигателя. Поэтому исправность системы охлаждения оказывает больное воздействие на тепловой режим поршня. Увеличение температуры охлаждающей жидкости системы охлаждения на 5º — 6ºС, увеличивает температуру поршня на 10ºС. При неисправности системы охлаждения первое что разрушается в двигателе это поршень. У поршня или прогорает днище или поршень заклинивается в цилиндре.
2. Отвод тепла при помощи масла системы смазки двигателя Поскольку многие внутренние детали картера двигателя смазываются распылением масла, масляный туман постоянно присутствует в картере двигателя. Соприкасаясь с горячими частями поршня или стенок цилиндра, масло забирает от них тепло и, осаждаясь в масляный поддон, переносит туда тепло. Обычно в таких системах при помощи масла от поршня отводилось не более 5% — 10% тепла. Но в последнее время в высоконагруженных двигателях, особенно в дизельных, масло системы смазки стало широко использоваться для охлаждения деталей, имеющих наибольшую тепловую нагрузку. Масло для охлаждения поршня может подаваться к поршню двумя способами. Первый способ – через специальный масляный канал, просверленный в стержне шатуна. В этом случае в шатуне имеется специальное отверстие, через которое масло разбрызгивается на внутреннюю стенку днища поршня. Второй способ – в нижней части картера устанавливаются масляные форсунки, которые под давлением распыляют масло во внутренней полости поршня, или впрыскивают его в специальный кольцевой охлаждающий канал, расположенный в головке поршня. Для отбора от поршня большего количества тепла масляный канал имеет волнообразную форму.
В этом случае при помощи масла может от поршня отводиться от 30 до 50% тепла. В результате при разбрызгивании масла на внутреннюю стенку днища поршня удаётся снизит температуру днища поршня на 15 – 20ºС, а при организованной циркуляции масла в поршне, температуру днища поршня можно снизить на 25 – 35ºС. Масло, охлаждающие поршни и другие детали сильно нагревается. При нагреве масло разжижается и теряет свои смазывающие свойства. По этой причине возникает угроза заклинивания коренных и шатунных подшипников коленчатого вала.
В таком случае система смазки двигателя имеет специальный охладитель масла, теплообменник которого передаёт тепло от масла жидкости, циркулирующей в системе охлаждения двигателя. Далее это тепло при помощи радиатора системы охлаждения рассеивается в окружающем автомобиль воздухе.
Охлаждение поршня маслом
Масляная форсунка, установленная в нижней части гильзы цилиндра, разбрызгивает мало из системы смазки двигателя на внутреннюю сторону днища поршня. Масло отбирает тепло от днища поршня и стекает в масляный поддон двигателя, где происходит его охлаждение.
Поршень с масляным каналом
На этих рисунках показан поршень современного дизельного двигателя 2.0 TDI мощностью 103 кВт концерна VOLKSWAGEN. Масляная форсунка впрыскивает масло в охлаждающий канал поршня. По охлаждающему каналу масло проходит через головку поршня, охлаждая его, выходит из охлаждающего канала поршня с другой стороны и стекает в масляный поддон двигателя.
3. Охлаждение поршня холодной топливовоздушной смесью. Вообще поршень любого двигателя частично охлаждается топливовоздушной смесью. Причем чем богаче смесь, там больше она может забрать энергии от поршня. Но по причинам топливной экономичности и экологии современные двигатели часто работают на обеднённой смеси. Современные электронные системы управления двигателя для избежания детонационного сгорания на некоторых режимах работы двигателя немного переобогащают смесь, за счёт чего несколько снижается температура поршня.
Конструкция поршня
- Днище поршня
- Головка поршня
- Юбка поршня
- Выемка для противовесов коленчатого вала
- Отверстие поршневого пальца
- Канавка стопорного кольца
- Бобышка поршня
- Отверстие для отвода масла из канавки маслосъёмного кольца
- Отверстие для отвода масла ниже маслосъёмного кольца
- Канавка маслосъёмного кольца
- Третья перегородка поршневых колец
- Канавка второго компрессионного кольца
- Вторая перегородка поршневых колец
- Канавка первого компрессионного кольца
- Верхняя перегородка (жаровой пояс)
- Метки направления установки поршня
- Метки группы диаметра поршня
Вид поршня современного форсированного двигателя
- Поршеньфорсированного двигателя
- Днище поршня
- Выемки клапанов
- Вытеснитель
- Верхняя перегородка (жаровой пояс)
- Канавка верхнего компрессионного кольца
- Вторая перегородка
- Третья перегородка
- Канавка маслосъёмного кольца
- Отверстие для отвода масла из канавки компрессионного кольца
- Юбка поршня с антифрикционным покрытием
- Бобышка отверстия поршневого пальца
- Отверстие поршневого пальца
- Проточка под стопорное кольцо поршневого пальца
- Канавка аккумулирования газов
На первый взгляд в конструкции поршня нет ничего сложного, поршень очень похож просто на перевёрнутый стакан. Но, учитывая, что к поршню предъявляются очень высокие и часто противоречивые требования, поршень является одной из наиболее трудных в конструировании и изготовлении деталей двигателя. В зависимости от конструкции двигателя, формы его камеры сгорания, расположения клапанов днище, и другие части поршня, могут иметь различную форму.
Некоторые примеры различных типов поршней
Поршень с вытеснителем и выемками клапанов
Поршень двигателя с непосредственным впрыском топлива автомобиля VOLKSWAGEN с системой управления двигателя FSI FSI
Направление потока смеси
Очень своеобразную форму имеют поршни двигателей автомобиля VOLKSWAGEN с расположением цилиндров VR и W. У этих двигателей днище поршня в одной плоскости не перпендикулярно оси поршня. Но все остальные детали поршня ось поршневого пальца и канавки поршневых колец строго перпендикулярны оси поршня.
Порщень RV-образного двигателя
Ранее отмечалось, во время работы двигателя поршень совершает возвратно поступательные движения с большой средней скоростью и с очень высокими знакопеременными ускорениями, следовательно, для уменьшения сил инерции конструктор должен стремиться сделать поршень, как и все остальные детали, совершающие возвратно-поступательное движение, как можно легче. Способов это сделать всего два, это применение материалов и низким удельным весом, и уменьшения общего количества материала, то есть удаление излишнего материала. Но удаление излишнего материала снижает прочность конструкции, чем деталь массивней, тем легче обеспечить её жесткость и теплоёмкость. Крайне не желательно деформация формы поршня под воздействием механических и температурных нагрузок. Во время работы двигателя поршень контактирует с другими деталями, стенками цилиндра, поршневыми кольцами и поршневым пальцем. Для обеспечения эффективной работы двигателя необходимо обеспечит точные зазоры между всеми этими деталями. Но все эти детали изготавливаются из различных материалов и, соответственно, имеют различные коэффициенты температурного расширения.
Поршень конструируется так, что после прогрева двигателя до нормальной рабочей температуры все зазоры между движущимися деталями были минимальными и соответствовали расчётным. Вообще наружная форма и размеры поршня должны соответствовать форме цилиндра. При изготовлении стремятся придать отверстию цилиндра строгие геометрические формы. Но, например, неправильная затяжка болтов крепления головки блока цилиндров, может сильно исказить первоначальную форму отверстия цилиндра. Поэтому, при ремонте двигателя всегда строго соблюдайте рекомендованные моменты затяжки всех резьбовых соединений.
Наружная форма поршня конструируется так, чтобы после прогрева двигателя поршень приобрёл форму строго цилиндра, поэтому при изготовлении поршня в его форму умышленно вносятся некоторые искажения, которые устраняются по мере прогрева двигателя. На холодном двигателе зазор между поршнем и стенками цилиндра увеличен. При прогреве двигателя до нормальной рабочей температуры тепловые зазоры между стенками цилиндра и поршнем уменьшаются и начинают соответствовать норме. Вот почему так важно поддерживать необходимую рабочую температуру двигателя.
Поршень состоит из трёх основных частей:
- Днище поршня
- Головка поршня
- Юбка поршня
Днище поршня предназначено для восприятия усилия давления газов. Головка поршня обеспечивает герметизацию подвижного соединения поршня и стенок цилиндров за счёт установленных на головку поршня поршневых колец. Для установки поршневых колец в головке поршня делаются специальные канавки. В верхние канавки современных поршней вставляются компрессионные кольца, а нижняя канавка предназначена для установки маслосъёмного кольца. В канавке маслосъёмного кольца делаются сквозные отверстия, через которые излишнее масло отводится во внутреннюю полость поршня.
Часть поршня, расположенная ниже нижнего кольца называется юбкой поршня. Юбка поршня, иногда её называют тронковая или направляющая часть поршня, предназначена для удержания поршня в правильном направлении и восприятия боковых нагрузок. То есть юбка является направляющим элементом поршня.
Очень важным параметром поршня является высота головки поршня относительно оси поршневого пальца (4). Иногда различные модификации двигателя имеют различную степень сжатия. В производстве легче всего изменить степень сжатия изменением высоты головки поршня.
При конструировании двигателя, для уменьшения сил инерции, конструкторы стремятся сделать поршень как можно легче. Но сделать все стенки поршня одинаковой толщины не удастся. Днище поршня, для восприятия больших нагрузок, всегда делается толще, чем стенки юбки. Но и юбка в различных местах имеет различную толщину. В местах бобышек под поршневой палец юбка имеет значительное утолщение, а, учитывая то, что различные части поршня имеют различную температуру, можно предположить, что при нагреве в разных местах поршень расширяется не одинаково. Поскольку во время рабаты двигателя головка поршня имеет более высокую температуру, следовательно, расширяется больше юбки поршня, головка поршня имеет несколько меньший диаметр по сравнению с юбкой поршня.
Поршень — диаметр головки
Под воздействием тепловых деформаций поршня, сложенных с боковыми усилиями, действующими на поршень в перпендикулярно оси поршневого пальца, цилиндрический поршень может приобрети овальную форму. Для устранения этого явления поршень изначально делается овальным, но в противоположном направлении, по мере прогрева двигателя поршень, под воздействием боковых сил, приобретает круглую форму. Малая ось овала совпадает с направлением оси поршневого вала, а большая ось овала совпадает с направлением действующих на поршень боковых сил.
Но кроме овальности наружная поверхность поршня имеет некоторую конусность. Поршни современного двигателя, кроме овальности, по высоте имеют бочкообразную форму. Поэтому, поршень, кажущийся на первый взгляд простым цилиндром, имеет довольно сложную форму.
Сложная форма поршня
На этом рисунке даны отклонения диаметра поршня от номинального размера. Зелёная линия показывает отклонения от номинального диаметра на различной высоте поршня со стороны торцов поршневого пальца, а розовая линия показывает отклонение номинального размера со стороны упорных поверхностей поршня. Ширина жёлтой зоны показывает овальность поршня на различной высоте.
Подбор точной наружной формы поршня очень трудная инженерная задача. В самом начале развития двигателестроения форма поршня подбиралась только опытным способом. Установив опытный поршнь в двигатель, двигатель нагружали различными нагрузками. После проведения необходимых испытаний поршень снимался и в местах, подвергшихся наибольшему износу, удалялась некоторая часть металла, и после этого проводился следующий цикл испытаний. Ели в результате излишне снятого металла поршень разрушался, толщину стенок или форму поршня изменяли и заново производили полный цикл испытаний. В результате продолжительных испытаний добивались наилучшей формы поршня для данного двигателя. По мере накопления опыта точная форма поршня стала определяться расчётным способом. Но даже сейчас, когда специальная компьютерная программа, может прочитать оптимальную форму поршня быстро, с высокой степью точности и с учётом всех, воздействующих на поршень температурных и механических факторов, проводится обязательное испытание поршней под различной нагрузкой. Другим способом терморегулирования поршня, то есть направленное изменение формы поршня под воздействием температуры является вплавление в алюминиевое тело стальных термостабилизирующих пластин. Термостбилизирующие пластины, при полном прогреве поршня, позволяют снизить радиальное расширение поршня приблизительно в два раза по сравнению с поршнем, полностью изготовленным из алюминиевого сплава.
Термостабилизирующие пластины
Термостбилизирующие пластины или кольца являются очень эффективным средством управления расширения поршня в необходимом направлении. Правда эти элементы имеют большое ограничение они могут быть вставлены только в литые поршни, но нет возможности установки этих элементов в современные кованные поршни. Как преднамеренные изменения формы поршня, так и вставка в поршень термостабилизирующих стальных пластин предназначены для обеспечения стабильного минимального теплового зазора между поршнем (юбкой поршня) и стеками цилиндра. Обычно тепловой зазор между юбкой поршня и стенками цилиндра автомобильного двигателя лежит в диапазоне 0,0254 – 0,0508 мм.
Боковые силы, приложенные к поршню
Во время работы двигателя шатун постоянно, кроме положения поршня в ВМТ и НМТ находится под некоторым углом к оси цилиндра, причем этот угол постоянно изменяется. Поэтому сила, приложенная к поршневому пальцу, раскладывается на две. Одна сила действует в направлении шатуна, а вторая сила действует в направлении перпендикулярном оси цилиндра. Эта сила прижимает поршень к стенке цилиндра. При движении поршня вверх на такте сжатия сжимаемый воздух оказывает сопротивление перемещению поршня. Часть это силы прижимает поршень к правой стенке цилиндра, если смотреть со стороны передней части двигателя. Во время рабочего хода расширяющиеся газы с большой силой давят на поршень. Часть этой силы расходуется на прижатие поршня к левой стенке цилиндра. Не стоит думать, что эти силы незначительны. Боковая сила, прижимающая поршень к стенке цилиндра приблизительно равна 10% — 12% процентов, от силы, действующей в направлении оси цилиндра. Ранее упоминалось, что во время работы двигателя на днище поршня среднего легкового автомобиля действует сила в несколько тонн, следовательно, сила, прижимающая поршень к боковой стенке может быть равна нескольким сотням килограмм. Поскольку сила, действующая на поршень во время рабочего хода в направлении оси цилиндра значительно выше, силы, действующей на поршень во время такта сжатия, поверхность, к которой прижимается поршень, во время такта рабочего хода, называется основной упорной поверхностью.
Из всего сказанного вытекает, что при прохождении поршнем ВМТ между тактами сжатия и рабочего хода происходит перемещение поршня от вспомогательной упорной поверхности к основной. Поскольку на поршень действуют большие силы, а все процессы в двигателе происходят очень быстро, перемещение поршня происходи в форме удара. Для уменьшения силы удара при перекладке поршня ось поршневого пальца (вернее ось отверстия в бобышках поршня под поршневой палец) смещена в сторону основной упорной поверхности.
Перекладывание поршня
При движении поршня вверх на такте сжатия, давление сжимаемого воздуха оказываемого на днище поршня преобразуется в силу, направленную перпендикулярно днищу поршня. Поскольку шатун находится под некоторым углом к оси поршня, возникает нормальная сила, прижимающая поршень к вспомогательной упорной поверхности (2). Сила, возникающая в результате воздействия давления, равна произведению давления, умноженного на площадь, на которую действует давление. Поскольку ось поршневого пальца смещена в сторону основной упорной поверхности (1), площадь правой половины поршня стала несколько больше площади левой половины. В результате чего сила, действующая на правую половину поршня, будет больше силы, действующей на левую половину поршня. Поэтому, когда поршень остановится в ВМТ, в результате разности этих сил, нижняя часть поршня переместится к основной упорной поверхности. А как только давление в камере сгорания начнёт увеличиваться, произойдёт полная перекладка поршня к основной упорной поверхности. Это позволяет произвести перекладку поршня без ударных нагрузок. При движении поршня в низ, при изменении угла шатуна к оси цилиндра и возрастания давления в цилиндре поршень оказывает давление на основную упорную поверхность (1).
Обычно смещение оси поршневого пальцы относительно оси поршня в автомобильных двигателях лежит в диапазоне 1,0 – 2,5 мм. Учитывая имеющиеся смещения оси поршневого пальца, поршень допускается устанавливать только в одном направлении. Неправильна установка поршня приведёт к появлению ударных звуков во время работы двигателя. Обычно на днище поршня имеется метка, указывающая правильное направление установки поршня. Перед ремонтом двигателя тщательно изучите руководство по ремонту.
Нормальный тепловой зазор между цилиндром и юбкой поршня лежит в диапазоне 0,0254 – 0,0508 мм. Но для каждого двигателя имеется точное значение этого параметра, которое можно найти в технических нормативах. Уменьшенный зазор приведёт к задирам поршня или поршневых колец и даже заклиниванию поршня в цилиндре.
Измерение диаметра поршня
При увеличенном зазоре повышается шумность работы двигателя и износ поршня и поршневых колец.
Измерение диаметра юбки поршня при помощи микрометра.
Измерение диаметра поршня Диаметр юбки поршня необходимо проверять в направлении перпендикулярном оси пальца строго на установленной высоте относительно нижнего края юбки. Замерьте диаметр юбки поршня на установленной высоте и запишите результаты измерений.
Измерение диаметра цилиндра нутромером
При помощи нутромера замерьте диаметр цилиндра и запишите результаты измерений. Для определения зазора необходимо из второго полученного результата вычесть результат первого измерения. Измерение зазора при помощи плоского щупа Некоторые производители двигателей предлагают проводить измерение зазора между поршнем и цилиндром при помощи плоского щупа.
Измерение зазора между поршнем и стенками цилиндра
На этих двух рисунках показаны различные способы измерения зазора при помощи плоского щупа.
Измерение зазора при помощи щупа
Материалы, из которых изготовлен поршень
Поскольку к поршням, как к изделию, предъявляются очень высокие требования, такие же высокие требования предъявляются к материалам, из которых изготавливаются поршни. Можно кратко перечислить требования к этим материалам:
- Для снижения инерционных нагрузок материал должен иметь как можно меньший удельный вес, но при этом быть достаточно прочным.
- Иметь низкий коэффициент температурного расширения.
- Не изменять своих физических свойств (прочности) под воздействием высоких температур.
- Иметь высокую теплопроводность и теплоёмкость.
- Иметь низкий коэффициент трения в паре с материалом, из которого изготовлены стенки цилиндров.
- Иметь высокую сопротивляемость износу.
- Не изменять своих физических свойств под воздействие нагрузок, вызывающих усталостное разрушение материала.
- Быть не дорогим, общедоступным и легко поддаваться механической и другим видам
Алюминий значительно легче чугуна, но поскольку он мягче чугуна, приходится увеличивать толщину стенок поршня, по этой причине вес поршневой группы алюминиевого поршня легче подобной группы с чугунным поршнем всего на 30 – 40%. Алюминий обладает высоким температурным коэффициентом расширения, для устранения влияния которого приходится вплавлять в тело поршня стальные термостабилизирующие пластины и увеличивать зазоры между поршнем и другими элементами в холодном состоянии. Алюминий обладает низким коэффициентом трения в паре алюминий – чугун. Что удовлетворяет, по этому показателю, применение алюминиевых поршней в большинстве двигателей имеющих чугунный блок цилиндров или чугунные гильзы, вплавленные или вставленные в алюминиевый блок цилиндров. Но существуют современные прогрессивные двигатели (в основном немецкие – Фольксваген, Ауди и Мерседес) с алюминиевым блоком цилиндров, не имеющих вплавленных чугунных гильз. У этих двигателей поверхность алюминиевых отверстий цилиндров обрабатываются несколькими различными способами. В результате поверхность стенок цилиндров становится очень твёрдой и приобретает возможность сопротивления износу, даже выше чем у чугунных гильз. Но в паре алюминий – алюминий коэффициент трения очень высокий. В этом случае для уменьшения сил трения проводится железнение опорных поверхностей юбки поршня. В процессе железнения на опорную поверхность юбки поршня гальваническим способом наносится тонкий слой стали.
Блок цилиндров без гильз
Поршень с железнением юбки
На этих рисунках показано плазменное напыление на рабочую поверхность цилиндров полностью алюминиевого блока цилиндров без применения вставных или вплавленных гильз цилиндров и соответствующий этой поверхности поршень с железнением опорной поверхности юбки поршня. Отсутствие чугунных гильз значительно уменьшает вес блока цилиндров.
Поршень с антифрикционным покрытием
Кроме антифрикционного покрытия на этом рисунке отчётливо видна стальная вставка, в которой проточена канавка для установки верхнего компрессионного кольца. Установка подобной вставки значительно увеличивает срок службы поршня.
Алюминиевые сплавы
Кремнеалюминиевые сплавы, из которых изготавливаются поршни большинства современных автомобильных двигателей, делятся на две группы – эвтектические (содержания кремния 11 – 13%) и заэвтектические (содержания кремния 25 – 26%). Для улучшения термической стойкости и механических свойств в эти сплавы добавляются никель, медь и другие металлы. В эвтектических сплавах свободный кремний отсутствует, поскольку он полностью растворён в алюминии, в заэвтектических сплавах кремний может присутствовать в виде кристаллов, часто видимых на срезе или расколе материала. Поршни массовых автомобилей изготавливаются методом литья в кокиль из эвтектических сплавов, поскольку эти сплавы обладают хорошими литейными свойствами. Поршни дизельных двигателей тяжёлых грузовых автомобилей и других нагруженных двигателей изготавливаются из заэвтектических сплавов. Эти сплавы обладают большей прочностью, но имеют большую стоимость в производстве, поскольку изделия из этих сплавов трудней обрабатываются.
Литые и кованые
На высоконагруженных форсированных автомобильных двигателях применяются поршни, изготовленные не методом литья, а методом ковки (горячей штамповки). Ковка значительно улучшает структуру материала, поэтому кованые поршни обладают большей прочностью и большей устойчивостью к износу. Но вкованные поршни невозможно установить терморегулирующие стальные пластины.
Структура металла кованного поршня
Литые поршни не применяются, если обороты двигателя в рабочем режиме превышают 5000 об/мин. Кроме того, кованые поршни имеют лучшую теплопроводность, поэтому температура кованых поршней ниже температуры поршней, изготовленных методом литья.
Сравнение температуры литого и кованного поршня
Ремонтные размеры и селективная подборка
Как ранее отмечалось, диаметр поршня должен строго соответствовать диаметру цилиндра с обеспечением необходимого зазора между ними. Но в реальном производстве изготовленные детали всегда несколько отличаются друг от друга. Поэтому во многих отраслях машиностроения, и автомобилестроение в том числе, принята селективная подборка. После изготовления измеряются и по результатам измерений детали делятся на несколько классов или групп, с определённым диапазоном измеряемого размера. То есть каждому классу отверстия цилиндра (обычно класс цилиндра выбит в определённом месте на блоке цилиндров), подбирается поршень такого же класса. Например, на ВАЗе поршни подразделяются на пять классов (A, B, C, D и E), но в запасные части для ремонта двигателей поставляются поршни только трёх классов (А, С и Е). Считается, что этого вполне достаточно для выполнения качественного ремонта.
Группы поршня по диаметру
Таблица и рисунок даны только для примера, поскольку для разных моделей двигателей выпускаются поршни разных номинальных размеров. На рисунке и в таблице упоминаются поршни разного номинального диаметра. Кроме этого выпускаются поршни ремонтного размера, с увеличенным на 0,4 и 0,8 мм диаметром. Не путайте ремонтные размеры, с классами по селективной подборке. Классы селективной подборки отличаются друг от друга на сотые, а, иногда, на тысячные доли миллиметра. А номинальные ремонтные размеры отличаются на несколько десятых долей миллиметра.
Во время капитального ремонта двигателя с расточкой блока цилиндров под ремонтный размер отверстий цилиндров специалисты ремонтного предприятия точно подгоняют диаметр цилиндра под имеющиеся поршни при хонинговке. Если по причине износа или наличия задиров требуется отремонтировать отверстие одного цилиндра, придётся растачивать все цилиндры. Не допускается применения на одном двигатели поршни разных ремонтных размеров. Диаметр поршня измеряется при помощи микрометра, в направлении, перпендикулярном оси поршневого пальца, на строго установленном расстоянии от низа юбки поршня, указанном в руководстве по ремонту. Все измерения, как диаметра поршня, так и диаметра отверстия цилиндра необходимо проводить при нормальной комнатной температуре – 20º С. Различные производители имеют различные группы или классы поршней по диаметру. Поэтому перед ремонтом двигателя ознакомьтесь с Руководством по ремонту. Кроме селективного подбора поршней по диаметру, поршни также делятся на несколько групп по диаметру отверстия под поршневой палец. Обычно группа поршня определяется цветовой меткой на внутренней поверхности бобышки поршня. Палец поршня имеет соответствующую по цвету метку на торцевой поверхности пальцы.
Группа поршня по диаметру поршневого пальца
Каждой группе соответствует установленный диапазон отверстия под поршневой палец, обычно различие между группами не превышает нескольких тысячных миллиметра.
Группа поршня по весу
Некоторые производители, также делят поршни на несколько групп по весу. Иногда при ремонте двигателя вес поршней уравнивается за счёт снятия металла в установленном месте юбки поршня. Чем меньше различие в весе поршней, тем меньше вибрации двигателя. При замене поршней подбирайте поршни одной весовой группы или, если это указано в Руководстве по ремонту, при помощи удаления металла уравняйте вес поршней.
Данные о размерах поршня и направлении его установки обычно выбиты на днище поршня.
Метки на днище поршня
Маркировка поршня:
- Стрелка для ориентирования поршня в цилиндре
- Ремонтный размер
- Класс поршня по диаметру
- Группа отверстия поршневого пальца
И так, поршни одного двигателя делятся по следующим признакам: Класс поршня по диаметру (селективная подборка) Группа отверстия под поршневой палец (селективная подборка) Ремонтный размер Группа по весу поршня
Mazda 323 | Ремонт узлов и деталей двигателя
Блок цилиндров и гильзы
Основные размеры блока цилиндров и гильз приведены в табл. 2.1.
Герметичность стенок рубашки охлаждения и масляных магистралей проверяют на специальных стендах. Для проверки герметичности рубашки охлаждения заглушите все выходные отверстия рубашки в блоке, опустите блок в ванну с водой и подайте в каналы рубашки сжатый воздух под давлением 150 кПа (1,5 кгс/см2) в течение 15 с. Утечка воздуха, определяемая по выходящим пузырям, не допускается.
Для проверки герметичности масляных магистралей заглушите все их выходные отверстия в блоке и подайте в каналы магистралей воду с добавлением хромпика под давлением 1500 кПа (15 кгс/см2) в течение 15 с. Утечка воды не допускается.
Если блок негерметичен, замените его.
При замене шпилек, выходящих в полость рубашки охлаждения, устанавливайте их и прокладки рубашки на цинковые белила.
Проверьте зазор между цилиндром и поршнем, указанный в табл. 2.1.Зазор определяют как разность между замеренными диаметрами поршня и цилиндра.
Диаметр цилиндра измеряют нутромером с ценой деления не более 0,01 мм в четырех поясах как в продольном, так и поперечном направлении на расстоянии 10, 50, 100 и 125 мм от его верхнего торца.
Гильзы цилиндров разбиты на пять размерных групп: А, Б, В, Г, Д (через 0,01 мм). Размерные группы обозначены цветной полосой (см. табл. 2.1).Если максимальное значение зазора больше значения, указанного в таблице, замените изношенный узел (поршень, гильзу или гильзу с поршнем).
Шатунно-поршневая группа
Основные размеры шатунно-поршневой группы приведены в табл. 2.1.Снятие и установка поршневых колец
Рис. 2.17. Съемник поршневых колец: 1 – рукоятка; 2 – выступы; 3 – упоры; 4 – захваты |
Поршневые кольца снимают с поршня и надевают на него с помощью специального съемника (рис. 2.17).
Выступы 2 съемника входят в зазор замка кольца и при нажатии на рукоятки 1 разводят кольцо на фиксированную величину. Разжатое кольцо легко снимается и устанавливается в канавку поршня.
ПРЕДУПРЕЖДЕНИЕ Разводить поршневое кольцо руками категорически запрещено: при чрезмерной деформации его форма необратимо искажается. |
Разборка поршня с шатуном
Выньте стопорные кольца поршневого пальца из канавок бобышек поршня, для чего подденьте каждое из них тонкой отверткой или шилом.
Нагрейте поршень, погружая его на 2–3 мин в воду температурой 45–75 °С.
Выпрессуйте поршневой палец из поршня и втулки головки шатуна ударами молотка через латунную оправку.
Подбор поршня к гильзе цилиндра
Поршень и соответствующая ему гильза должны относиться к одной размерной группе (их буквенные индексы должны быть одинаковы). Буквенная маркировка нанесена на днище поршня.
По наружному диаметру поршни разбиты на пять размерных групп: А, Б, В, Г, Д (через 0,01 мм).
Проверьте необходимый монтажный зазор (0,05–0,07 мм) между поршнем и гильзой как разность между замеренными диаметрами цилиндра и поршня.
Масса металла в поршне распределяется неравномерно, поэтому его юбка в холодном состоянии сложной геометрической формы. В поперечном сечении она овальная (большая ось овала перпендикулярна оси поршневого пальца) и конусная (с большим основанием внизу).
Диаметр поршня замеряют по большой оси овала юбки на расстоянии 12,95 мм от торца посадочного пояска диаметром 77,5+0,2, выполненного на внутренней поверхности юбки.
Поршни подбирают к гильзам не только по диаметру, но и по массе для сохранения уравновешенности двигателя. Поршни одного двигателя не должны отличаться по массе друг от друга более чем на 3 г. На заводе-изготовителе поршни номинального размера сортируют по массе на четыре группы, маркировку которых (1, 2, 3, 4) наносят на днище поршня. Все поршни, установленные на один двигатель, должны быть одной весовой группы.
Проверка технического состояния поршневых колец
Необходимость проверки или замены поршневых колец возникает при повышенном, более 100 г на 100 км пути, расходе (угаре) масла.
Для проверки состояния поршневых колец частично разберите двигатель и выньте поршни с кольцами. Перед проверкой очистите поршневые кольца от нагара и смолистых отложений.
Проверяйте поршневые кольца на соответствие техническим требованиям по параметрам, указанным в табл. 2.2.
Рис. 2.18. Проверка зазора между поршневыми кольцами и канавками: 1 – поршневое кольцо; 2 – поршень; 3 – набор щупов |
Зазор по высоте между канавкой и кольцом проверяйте, вставляя кольцо в соответствующую канавку (рис. 2.18).
Зазор в замке кольца измеряйте, поместив кольцо в ту гильзу, в которой оно работало, или, если оно новое, в которой будет работать. Для правильной установки кольцо продвиньте в гильзе с помощью головки поршня, используемого в качестве оправки, на расстояние 20–30 мм от нижнего торца гильзы. Если проверка покажет, что зазор недостаточный, подпилите стыковые поверхности замка бархатным надфилем, а если повышенный — замените кольцо.
Упругость поршневых колец измеряйте на специальных весах с помощью гибкой ленты, охватывающей кольцо.
При проверке состояния поршневых колец может оказаться, что необходима замена только верхнего компрессионного кольца, так как оно изнашивается значительно быстрее остальных.
Не рекомендуется при ремонте устанавливать новые верхние компрессионные кольца с хромированным покрытием, предназначенные для установки в новые гильзы, в цилиндры работавшего двигателя, имеющие некоторый износ. Хромированное покрытие очень твердое, поэтому такие кольца будут медленно прирабатываться к поверхности гильзы. По этой причине ремонтные комплекты колец номинального размера выпускают с нехромированными верхними кольцами.
Рис. 2.19. Расположение поршневых колец в канавках поршня: 1 – поршень; 2 – верхнее компрессионное кольцо; 3 – нижнее компрессионное кольцо; 4 – маслосъемное кольцо |
Правильное расположение поршневых колец в канавках поршня показано на рис. 2.19.
Если износ гильз незначительный, то вместо старых колец можно использовать ремонтные кольца номинального размера при условии, что зазор в замке кольца, вставленного в гильзу, не превышает 0,75 мм. В противном случае замените гильзу.
Проверка зазора между вкладышами шатунных подшипников коленчатым валом
Зазор между вкладышем и шейкой коленчатого вала определяется разностью размеров, полученных при замере диаметров отверстий в нижних головках шатунов с вставленными вкладышами и шеек вала. Крышки шатунов должны быть затянуты полным моментом.
Если значение зазора находится в пределах допуска или не превышает допустимого при износе, указанном в табл.
2.1, можно использовать эти вкладыши. При большем зазоре прошлифуйте шатунные шейки коленчатого вала до ближайшего ремонтного размера и установите вкладыши ремонтного размера (табл. 2.3).Сборка шатунно-поршневой группы
После подбора поршней к гильзам подберите поршневые пальцы к поршням и втулкам малых головок шатунов.
Посадка поршневого пальца в бобышках поршня может быть в пределах от 0,0025 мм натяга до 0,0025 мм зазора. Зазор между поршневым пальцем и отверстием втулки головки шатуна должен быть в пределах 0,0045–0,0095 мм для данной размерной группы деталей.
Для облегчения подбора поршневые пальцы, поршни и втулки разбиты на четыре размерные группы, отличающиеся по диаметру на 0,0025 мм. Каждая группа промаркирована краской определенного цвета (см. табл. 2.1): на поршне — на нижней поверхности одной из бобышек, на поршневом пальце — на внутренней поверхности с одного конца, на шатуне – у малой головки.Сопряжение поршневого пальца и втулки головки шатуна проверяют, вставляя палец, смазанный моторным маслом, в отверстие втулки. При правильном сопряжении шатун должен проворачиваться на пальце под действием собственного веса, а палец не должен выпадать из втулки верхней головки шатуна в вертикальном положении. Для соблюдения этих требований допустимо использовать пальцы смежной группы (в сторону уменьшения зазора). Во всех случаях поршневые пальцы подбирайте при температуре воздуха (20±3) °С.
Если необходимо заменить один из шатунов, его нужно подобрать по массе к остальным шатунам комплекта. Разница значений массы самого тяжелого и самого легкого шатуна в комплекте, устанавливаемом на двигатель, не должна превышать 8 г. Шатуны, принадлежащие к одной группе по массе, маркируются риской на приливах их крышек.
Перед сборкой нагрейте поршень, опустив его в сосуд с водой температурой 45–75 °С и выполните операции в следующей последовательности:
1. Вставьте смазанный маслом палец в отверстия бобышек поршня и втулки шатуна.
ПРИМЕЧАНИЕ При сборке поршня с шатуном сориентируйте их так, чтобы стрелка, выбитая на днище поршня, была обращена в сторону выступа на теле шатуна и паза на крышке. |
2. Вставьте в канавки бобышек поршня стопорные кольца поршневого пальца.
3. Наденьте на поршень поршневые кольца, используя съемник (см. рис. 2.17).
Рис. 2.9. Взаимное расположение замков поршневых колец перед установкой поршня в гильзу |
4. Расположите замки поршневых колец под углом 120° друг от друга (см. рис. 2.9). Расположение колец в канавках поршня должно соответствовать показанному на рис. 2.19. Установку поршня с шатуном на двигатель см. в подразделе «Разборка и сборка двигателя».
ПРЕДУПРЕЖДЕНИЕ Шатун обрабатывают в сборе с крышкой, поэтому крышки шатунов не взаимозаменяемы и не должны обезличиваться при разборке и сборке. |
Проверка и ремонт деталей блока цилиндров 2.0 Л (D4EA)
Маховик
1. Проверить зубчатый венец на наличие повреждений и сколов зубьев. При обнаружении дефектов, заменить новым.
2. Проверить техническое состояние болтов крепления маховика, при необходимости заменить новыми.
Осевой зазор коленчатого вала и шатунов
1. Используя набор щупов (А), измерить осевой зазор между шатуном (В] и коленчатым валом (С), как показано на рисунке. Стандартная величина зазора: 0.10 — 0.35 мм. Предельно допустимая величина зазора: 0.40 мм.
2. Если осевой зазор шатуна превышает предельно допустимую норму, необходимо установить новый шатун и повторить измерение. Если зазор, после замены шатуна, не соответствует стандартной величине, необходимо заменить коленчатый вал.
3. Если зазор на много превышает предельно допустимую норму, необходимо заменить детали по мере необходимости.
Зазор в подшипниках коренных опор коленчатого вала
1. Для проверки зазора в коренных опорах коленчатого вала, необходимо снять рамку коренных опор, коленчатый вал и вкладыши подшипников.
2. Промыть все опоры и вкладыши коренных опор.
3. Нарезать несколько отрезков специального пластикового калибра.
4. Положить отрезки пластикового калибра на каждую коренную
опору в блоке цилиндров и рамке коренных опор.
5. Установить вкладыши, коленчатый вал и рамку лестничного типа, затем затянуть болты крепления в определенной последовательности с требуемым моментом затяжки.
УКАЗАНИЕ :
Не вращать коленчатый вал.
6. Отвернуть болты крепления и снять рамку коренных опор и вкладыши подшипников. Затем, используя специальную шкалу (прилагается к набору], измерить ширину калибра, которая соответствует определенному зазору. Зазор в подшипниках коренных опор: 0.024 — 0.042 мм.
Ремонтные размеры вкладышей коренных опор | ||||||||||||||||||||||||
|
7. Если ширина пластикового калибра слишком большая и наоборот, необходимо извлечь верхние и нижние вкладыши подшипников и установить на их место новые, с метками одного цвета. Повторить операции по измерению зазора в подшипниках.
УКАЗАНИЕ :
Не подкладывать шайбы и не царапать вкладыши, для регулировки зазора.
8. Если после повторной проверки, зазор в подшипниках не соответствует требуемой величине, необходимо заменить вкладыши, на вкладыши следующего ремонтного размера, после чего повторить измерение.
УКАЗАНИЕ :
Если отрегулировать зазор в подшипниках не удается, необходимо заменить коленчатый вал.
ПРЕДОСТЕРЕЖЕНИЕ:
Если идентификационные метки загрязнены, запрещается применять для очищения щетки с металлической щетиной. Необходимо промывать детали растворителем.
Зазора в подшипниках шатунных шеек
1. Снять крышки шатунов вместе с вкладышами.
2. Промыть поверхности контакта.
3. Положить отрезок пластикового калибра на шатунную шейку, вдоль оси коленчатого вала.
4. Установить крышку шатуна и затянуть болты крепления с требуемым моментом затяжки.
УКАЗАНИЕ :
Не проворачивать коленчатый вал.
5. Отвернуть болты крепления и снятья крышку шатуна и измерить ширину пластикового калибра, котораясоответствуетопределенному зазору. Стандартная величина зазора: 0.024 — 0.042 мм.
6. Если ширина пластикового калибра слишком большая и наоборот, необходимо извлечь верхние и нижние вкладыши подшипников и установить на их место новые, с метками одного цвета. Повторить операции по измерению зазора в подшипниках.
УКАЗАНИЕ
Не подкладывать шайбы и не царапать вкладыши, для регулировки зазора.
Ремонтные размеры вкладышей шатунных шеек | |||||||||||
|
7. Если после повторной проверки, зазор в подшипниках не соответствует требуемой величине, необходимо заменить вкладыши, на вкладыши следующего ремонтного размера, после чего повторить измерение.
УКАЗАНИЕ :
Если отрегулировать зазор в подшипниках не удается, необходимо заменить коленчатый вал.
ПРЕДОСТЕРЕЖЕНИЕ:
Если идентификационные метки загрязнены, запрещается применять для очищения щетки с металлической щетиной. Необходимо промывать детали растворителем.
Уравновешивающие валы
1. Используя специальное оборудование и индикатор часового типа, измерить биение каждой шейки вала. Стандартная величина биения уравновешивающего вала: 0.025 мм.
2. Используя микрометр, измерить наружные диаметры коренных шеек уравновешивающих валов. Стандартная величина диаметра: 19.980 — 19.993 мм (опора №1], 27.99 — 28.01 мм (опора №2), 41.99 — 42.01 мм (опора №3].
3. Используя нутромер, измерить внутренние диаметры опор уравновешивающих валов. Стандартная величина внутренних диаметров: 20.00 — 0.02 мм (опора №1), 28.06 — 28.08 мм (опора №2), 42.06 — 42.08 мм (опора №3).
4. Вычислить зазор между опорами и шейками уравновешивающих валов. Стандартная величина зазора: 0.007 — 0.041 мм (опора №1), 0.050 — 0.090 мм (опора №2], 0.050 — 0.090 мм (опора №3).
Коленчатый вал
УКАЗАНИЕ :
Промыть и высушить коренные и шатунные шейки коленчатого вала.
Проверить техническое состояние шеек.
1. Установить коленчатый вал на специальные V-образные блоки.
2. Используя индикатор часового типа и специальное оборудование, измерить биение каждой коренной шейки коленчатого вала. При измерении биения, коленчатый вал необходимо проворачивать на полный оборот. Различие в показаниях биения каждой шейки не должна превышать предельно допустимой величины биения. Стандартная величина биения коленчатого вала: 0.06 мм.
3. Используя микрометр, измерить каждую коренную шейку в двух точках и двух взаимоперпендикулярных плоскостях, как показано на рисунке. Максимально допустимое отклонение от цилиндрической формы коренных шеек коленвала: 0.0035 мм.
4. Измерить конусность каждой коренной и шатунной шейки коленчатого вала. Различие в размерах каждой из шеек коленвала не должно превышать 0.006 мм. Предельно допустимая величина конусности шеек: 0.006 мм.
Блок цилиндров и поршни
1. Проверить поршни на наличие повреждений и повышенного износа.
2. Измерить диаметр поршня, используя микрометр, на расстоянии 10 мм от нижней части юбки, в плоскости поперечной оси пальца. Существует три ремонтных размера поршней (А, В, С]. Метка, указывающая на ремонтный размер, нанесена на днище поршня.
Ремонтные размеры поршней и цилиндров блока | ||||||||||||||||
|
3. Используя нутромер, измерить внутренний диаметр каждого цилиндра, во взаимоперпендикулярных плоскостях, в трех точках (1-ая — расположение компрессионного кольца в ВМТ; 2-ая центр цилиндра; 3-я — НМТ поршня). Если какой-либо из размеров превысит предельно допустимую величину, необходимо заменить блок цилиндров. При необходимости, расточить цилиндры до следующего ремонтного размера: 0.25: 83.250-83.280 мм 0.50: 83.500 — 83.530 мм. Предельно допустимая конусность цилиндра: 0.01 мм.
Мелкие царапины и задиры, необходимо удалить расточкой с последующим хонингованием.
Используя специальную линейку и набор щупов, измерить неплоскостность поверхности разъема блока с головкой. Стандартная величина неплоскостности: 0.042 мм (по ширине), 0.096 мм (по длине), 0.012 мм (на площади 50 х 50 мм). Предельно допустимая величина неплоскостности: 0.10 мм.
Вычислить зазор между поршнем и цилиндром, используя полученные данные при измерении. Если зазор превышает допустимые нормы, необходимо проверить поршень и цилиндр на наличие повышенного износа. Стандартная величина зазора: 0.070 — 0.090 мм. Ремонтные размеры поршней:
0.25: 83.170-83.200 мм 0.50: 83.420-83.450 мм.
Авторская статья «Поршни Ferroterm от Mahle
Статья на сайте mahle.ru называется «Поршни FERROTHERM® — гениальная комбинация из стали и алюминия». Сюжет немного детективный и только в конце оказывается, что эти поршни разработаны уже 20 лет назад. Поэтому мы повзолим себе почитать статью с конца.
«Поршни FERROTHERM присутствуют на рынке вот уже почти 20 лет, но, тем не менее, имеют репутацию современных поршневых разработок, находящих применение, прежде всего, в грузовой транспортной технике. Кроме всего прочего, эти поршни производства MAHLE устанавливаются на большое число двигателей в автомобилях марок Volvo, Scania, Detroit Diesel и Caterpillar уже при заводской сборке транспортных средств. Ведущие производители и сегодня все еще руководствуются заложенным в них гениальным принципом. Так, в настоящее время, ведутся активные разработки силовых агрегатов с двухкомпонентными поршнями и для концерна Mercedes-Benz, и для одного из крупных российских производителей двигателей.»
Механики традиционно предупреждаются о необходимоcти правильной сборки. «Поршни FERROTHERM поставляются в разобранном состоянии; верхняя часть и юбка поршня располагаются в коробке рядом, но в раздельной упаковке. При монтаже верхней части, юбки и шатуна необходимо обращать самое пристальное внимание на правильность взаимного расположения этих деталей. Тем более что конструкция верхней части и юбки поршня допускает только одну возможность их правильного соединения.»
И статья эта не могла появиться 20 лет назад хотя бы потому, что тут написано «Главное направление развития автомобильной и моторостроительной отрасли выбрано совершенно четко — это постоянный рост мощности двигателей.». Повышение надежности, увелчение срока службы деталей — теперь не столь важны. Отчасти эти параметры уже достигнуты.
Мотивы искать именно такие решения сейчас и 20 лет назад были разные, но «старый» разработки оказываются еще актуальны. «Повышение удельной мощности двигателя неизбежно влечет за собой возрастание термических и механических нагрузок на поршни. Это обстоятельство,безусловно, необходимо учитывать при разработке и конструктивном исполнении поршней, ведь, в конце концов, именно они считаются деталями, которые в наибольшей степени подвергаются нагрузкам в двигателе внутреннего сгорания. Не секрет, что при температурах свыше 360 °C, сплошь и рядом наблюдаемых в области рабочей выемки поршня, а также при давлении воспламенения более 170 бар, поршни из алюминиевых сплавов очень быстро достигают пределов своих возможностей в отношении нагрузок.»
«Таким образом, весьма велик спрос на конструктивные идеи и на возможности использования иных материалов. Разработчики концерна MAHLE предложили свое решение. Оно состоит в том, чтобы создавать поршни с головкой из термостойкой кованой стали и направляющей юбкой из алюминия. Так родился поршень FERROTHERM»
«Главный принцип нашей конструкции — это четкое распределение обязанностей. Алюминиевая направляющая юбка берет на себя только лишь обеспечение правильности хода поршня внутри цилиндра, в то время как наиболее трудные функции, а также герметизация выполняются верхней частью поршня.Кованая сталь головки легко справляется со значительно более высокими рабочими температурами на днище поршня и допускает намного большие контактные напряжения между втулкой и поршневым пальцем. Высокая твердость кованой стали весьма положительно сказывается на износостойкости и сроке службы кольцевых канавок, располагающихся в верхней части поршня.»
«Другим весомым преимуществом стали по сравнению с алюминиево-кремниевыми сплавами является значительно меньший коэффициент теплового расширения, что позволяет обходиться более узким зазором между поршнем и цилиндром на жаровом поясе. Это обстоятельство, в свою очередь, открывает прекрасные возможности для улучшения герметизации и уменьшает количество прорывных газов, в то время как очень узкий кольцевой зазор между поршнем и цилиндром помогает работе поршневых колец. Позитивное воздействие оказывает малый зазор на жаровом поясе и на параметры выбросов вредных веществ,поскольку незначительный зазор влечет за собой и сокращение застойной зоны,обеспечивая тем самым оптимальное и чистое сгорание топлива.»
«Однако один недостаток сталь все же имеет. По сравнению с алюминием она обладает более низкой теплопроводностью. Поэтому важной задачей было обеспечение достаточно низкого температурного уровня благодаря оптимизации структуры охлаждения поршня. В конце концов, было найдено решение, представлявшее собой листы пружинной стали или же конструктивный дизайн юбки поршня, формирующие охлаждающий канал, в который осуществляется вбрызгивание моторного масла для охлаждения. Благодаря большому сечению и циклическим движениям поршня в вертикальной плоскости возникает так называемый эффект шейкера, создающий условия для достаточного охлаждения головки поршня.»
«Верхняя часть и направляющая юбка поршня соединены между собой с помощью пальца. При этом процесс сгорания топлива и давление воспламенения воздействуют на стальную головку, и возникающее усилие передается напрямую с головки через поршневой палец на шатун. В отверстии под поршневой палец располагается втулка из цветного металла, идеально взаимодействующая в работе с поршневым пальцем. На новых моделях такое втулочное отверстие имеет к тому же и специальное покрытие, что в еще большей мере улучшает «сотрудничество» поршня и пальца. Между верхней стальной частью и алюминиевой юбкой имеется зазор. Такое пространственное разделение нужно для термической автономности элементов. Благодаря такому решению температура юбки в данном случае значительно ниже, чем на цельноалюминиевом поршне.Из-за более низкого уровня температуры на юбке поршня и разделению передачи усилия появилась возможность заменить конструктивные аспекты юбки на ее основные задачи. Результат можно просто услышать по очень мягкой и спокойной работе двигателя, несмотря на жесткий процесс сгорания дизельного топлива, а также по увеличению мощности и вращающего момента.»
На заметку:
Cтальная головка двухкомпонентного поршня FERROTHERM отмечена комбинацией букв «KB», алюминиевая юбка поршня имеет обозначение «L».
Почему прогорел поршень? Как избежать прогара? Почему прогорают поршни? Из за чего сгорает поршень на дизеле
Зона днища и жарового пояса полностью разрушена. Жаровой пояс прогорел до упрочняющей вставки. Расплавленный материал поршня продвинулся по юбке поршня и вызвал там также повреждения и задиры. Упрочняющая вставка первого компрессионного кольца сохранилась частично только еще на левой стороне поршня.
Остаток упрочняющей вставки отсоединился во время работы от поршня и вызвал в камере сгорания другие разрушения. Части поршня отлетали с такой силой, что попали через впускной клапан во впускной коллектор и тем самым также в смежный цилиндр и там также нанесли повреждения (следы ударов).
к рис. 2: в направлении впрыска одной или несколькими струями форсунок на днище поршня и на краю жарового пояса появились эрозионные прогары. Юбка поршня и зона поршневых колец не имеют задиров.
Оценка повреждения
Повреждения такого рода возникают особенно в дизельных двигателях непосредственного впрыска. Предкамерных дизельных двигателей это касается только в том случае, если одна из предкамер повреждена и в результате этого предкамерный двигатель превращается в двигатель непосредственного впрыска.
Если форсунка соответствующего цилиндра не поддерживает давление впрыска после окончания процесса впрыска и давление падает, вибрации в топливопроводе высокого давления могут еще раз поднять иглу форсунки, так что после окончания процесса впрыска снова впрыскивается топливо в камеру сгорания (механические форсунки).
Если кислород в камере сгорания исчерпан, то отдельные капли топлива протекают через всю камеру сгорания и попадают на днище перемещающегося вниз поршня ближе к краю. Они быстро догорают там при нехватке кислорода, причем образуется довольно много тепла. При этом материал в этих местах смягчается. Динамические силы и эрозия быстро протекающих газов сжигания вырывают отдельные частицы из поверхности или снимают головку полностью, что приводит к повреждениям.
Возможные причины повреждения
- негерметичные форсунки или тяжело перемещающиеся или заклинившиеся иглы форсунок.
- поломанные или ослабившиеся пружины форсунок.
- дефектные клапаны понижения давления в топливном насосе высокого давления количество впрыскиваемого топлива и момент впрыска не отрегулировано по инструкции изготовителя двигателя.
- в предкамерных двигателях: дефект предкамеры, но только в сочетании с одной из вышеназванных причин.
- задержка зажигания из-за недостаточного сжатия в результате слишком большого зазора, неправильных фаз газораспределения или негерметичных клапанов
- слишком большая задержка из-за несклонного к воспламенению дизельного топлива (слишком низкое цетановое число)
Дизельный мотор имеет значительные отличия от бензинового. Двигатели отличаются в частности принципом воспламенения, у бензина от искры, у дизеля от сжатия. Соответственно, нагрузка на сами поршня также превышает бензиновые аналоги в 3 раза. Компрессия бензинового двигателя достигает значения в 10 бар давления. В свою очередь, дизельный двигатель обеспечивает давление в 30 бар. Степень сжатия также выше в 3 раза.
Но, при этом, дизельный двигатель более износоустойчивый. Правда, существует ряд нюансов, который делает дизельный двигатель менее устойчивым, чем бензиновый. Чаще всего, дизель дольше прослужит своему владельцу, если все в двигателе будет хорошо и обслуживаться он будет вовремя. Но, практика показывает, что хорошо не бывает в 90% случаев.
3 основные причины, почему прогорел поршень дизельного двигателя
По каким причинам может прогореть поршень дизельного двигателя? Первой и самой вероятной причиной является то, что льет форсунка. Проще говоря, она подает больше топлива, чем допустимо производителем. В итоге, приходится работать с большим объемом горения и пламени, чем позволено. Данная процедура сопровождается характерным «тах-кающим» звуком.
Если долго использовать машину в подобном режиме, то со временем стенки поршня оплавляются. Причем, проблема проявит себя при первом же плавлении поршней. Материал расплавленного алюминия будет разлетаться по стенкам и ускорит разрушение двигателя.. Чем дольше так ездить, тем больше деталей в двигателе вам потребуется заменить. Вплоть до капитального ремонта или полноценной замены двигателя.
Происходит так потому, что куски абразива попадают между гильзой и поршнем, стирают поверхность, создают задиры. В этом всём чаще всего виноваты форсунки и их неправильная подача топлива.
Также, причиной прогара поршней может стать масло. Такие случаи появляются также довольно часто. Так может происходить потому, что направляющие клапанов головки блока цилиндра могли разболтаться, а сальники потерять свою устойчивость. Масло стекает по впускному клапану и потихоньку капает на поршень двигателя. Температура горения масла выше, чем температура топлива. И эта ситуация заставляет двигатель постепенно умирать.
Бывает так, что в камеру сгорания поршня попадает антифриз. Попадание воды или антифриза внутрь камеры сгорания производит катализацию взрыва.
Как справиться с проблемой?
Избежать такой ситуации очень просто. Вовремя проходите технический осмотр машины, при любом непонимании и лишних звуках в районе двигателя обязательно проверяйте машину на СТО. Кроме того, постоянно следите за уровнем масла и антифриза в Вашем авто. Своевременная диагностика двигателя предупреждает его неисправность.
Дизель сервис в Киеве. У Вас сломалась турбина? Вышла из строя форсунка? Появился сторонний шум в двигателе? Или просто плановая замена цепи ГРМ? Турбо дизель сервис выполнит диагностику и ремонт Вашего автомобиля, диагностика дизельного двигателя в киеве, проверка форсунок на стенде, ремонт дизельных форсунок common rail в Киеве, ремонт форсунок Киев, диагностика турбины, диагностика и замена свечей накала, проверка компресии дизельного двигателя, диагностика автомобиля перед покупкой и даже ремонт дизельного двигателя, компьютенрая диагностика авто, удаление сажевого фильтра, удаление свечей накала и закисших форсунок. Наш дизель сервис предоставляет такие услуги: ремонт форсунок, замена ремня грм, ремонт тнвд, земена ремкомплекта тнвд, ремонт форсунок бош,восстановление пьезофорсунок, реставрация плунженой пары, замена втулки акселератора тнвд, замена клапана форсунки делфи. Ремонт турбины Mersedes, BMW, Ford, Renault, Opel, Fiat, Pegeout, Citroen, Hundai, Kia, VW, Volvo, Iveco, S cania, Toyota, land rover, Porshe, Mazda, в городах Киев, Харьков, Днепропетровск, Полтава, Сумы, Черкасы, Кировоград, Запорожье, Умань, Крывой рог, Никополь, Николаев, Херсон, Винница, Житомир, Черновцы, Тернополь, Львов, Луцк, Ровно, Одесса. Обменный фонд турбин. Ремонт турбин Киев, ремонт турбины в Киеве, ремонт турбин дизельных и бензиновых двигателей. Ремонт пьезофорсунок в Киеве Замена ремня или цепи газораспределительного механизма ГРМ Fiat Doblo 1.3, Opel combo 1.3, замена свечей накала, ремонт дизельного двигателя, капитальный ремонт двигателя в Киеве, ремонт ГБЦ. Ремонт форсунок CDI, CRDI. Bosch, Delphi, Siemens VDO Continental, Denso. Диагностика и ремонт насос форсунок и насосных секций. Дизель сервис Киев, замена грм Киев Капитальный ремонт дизельного двигателя в киеве, демонтаж форсунок рено трафик, ссанг йонг,опель виваро. Турбо дизель сервис выполняет ремонт форсунок CDI, CRDI, DCI, tdci, hdi, Bosch, Delphi, Siemens VDO. Ремонт ТНВД бош. Чистка топлиной системы, чистка рампы высокого давленя, реставрация пьезофорсунок, чистка топливного бака в Киеве
Поршень двигателя внутреннего сгорания является, едва ли, не самой важной деталью. Именно поршень преобразует тепловую энергию в механическую, что и приводит двигатель в движение. К тому же, на поршень двигателя возложены такие функции, как отвод газов из камеры сгорания, а также ее герметизация. Стоит ли говорить, что для успешной реализации всех этих требований, поршень двигателя должен обладать особыми свойствами, особой прочностью, чтобы надежно выполнять свою работу на протяжении длительного срок службы?
Устройство поршня двигателя
Давайте вкратце рассмотрим, как устроен автомобильный поршень. Для начала необходимо отметить, что это цельный элемент, который изготавливается путем литья, либо же штамповки. Приходилось ли вам слышать про кованные поршни? Так вот, кованными, как раз, называют штампованные поршни. Выполняются эти элементы двигателя из сплавов алюминия, реже из стали. Такое решение вызвано тем, что поршень должен отвечать сразу трем характеристикам:
- Прочность;
- Легкость;
- Термоустойчивость.
Если же попытаться разобрать устройство поршня, то можно выделить такие элементы, как головка поршня, т.е. рабочая поверхность и его юбка. В зависимости от типов двигателя, головка поршня может иметь различную форму. В бензиновых моторах, она практически плоская, с незначительным возвышением в центре. Иногда на поршнях могут быть выточены вырезы под клапана. Говоря про поршень , необходимо упомянуть о более сложной его форме. Дело в том, что и камера сгорания в дизелях немного нестандартная, она спроектирована таким образом, чтобы создать завихренее газов и улучшить образование горючей смеси.
На боковой грани поршня расположены отверстия под крепление поршневых колец. Если говорить вкратце об их назначении, то это создание герметичности между поршнем и стенками цилиндра, а также удаление излишков масла из цилиндра, дабы они не сгорали вместе с горючей смесью. Как правило, на поршень устанавливается три кольца — одно из которых и является маслосъемным, а другие два – компрессионные, то есть удерживающие газы и давление внутри камеры сгорания.
Проблемы, которые могут возникать с поршнем
Так как поршень имеет определенный срок службы, вполне логично, что когда-то с ним начнутся проблемы. Таковые можно разделить на 2 группы:
- Проблемы теплового характера;
- Проблемы механического характера;
Как правило, одно от другого зависит. К примеру, возьмем за основу наиболее часто встречающиеся проблемы – стук поршня и образование сизого дыма из выхлопной трубы. Это свидетельствует о не герметичности цилиндропоршневой группы. В результате залегших, или стершихся поршневых колец, масло проникает в камеру сгорания, а давление, которое образуется в ходе сжатия поршнем газов, прорывается сквозь рабочую поверхность. Результатом становится такая неприятность, как поршня. Если прогорел поршень на дизельном двигателе, причина этому аналогично.
Результат всей этой неприятности один – необходимость производить дорогой ремонт.
Почему прогорает поршень?
Возникновению этой проблемы могут служить несколько причин:
- Проблемы, связанные с охлаждением поршня;
- Недостаток смазывающей жидкости;
- Механические проблемы, в результате которых было высокое давление в камере сгорания.
Мы рассмотрели с вами назначение и устройство поршня двигателя, а также обратили внимание на проблемы, которые могут возникнуть с данным элементом. Надеемся, что вам удалось пополнить свой запас знаний, прочитав нашу статью.
Один рижанин взял у знакомого дизельную машину, и поехал в Литву. Из Литвы машину привезли на буксире — что-то с мотором. Двигатель не заводился, померили компрессию — ее не было. Разобрали — и увидели оплавленные поршни (см. фото). Из-за чего это произошло — по вине водителя, или причина в чем-то другом?
Ситуация
По рассказу водителя, дело было на трассе. Почувствовал потерю тяги, остановился. Что странно — обороты не сбрасывались до холостого хода. Более того — они вдруг начали самопроизвольно расти, и поднялись почти до 4000 об/мин. Выключение зажигания не помогло — двигатель продолжал работать, а заглушить его получилось только варварским способом — удерживая тормоз, воткнуть на месте пятую передачу, и бросить сцепление. Владелец машины сначала не поверил — по его мнению, водитель просто “поотжигал” по литовским скоростным автострадам, и загубил дизель. Но механики, увидев симптомы, сказали, что водитель не при чем. Наоборот, он правильно сделал, что не растерялся, и заглушил мотор. Иначе бы тот окончательно пошел вразнос, и последствия были бы куда хуже.
Причины
Первое, на что подумали — турбина. Бывает, что из-за разрушения ее втулок масло начинает поступать в камеры сгорания, и двигатель от этого разносит очень быстро. Но турбина была в порядке, уровень масла — тоже. Дело было в форсунках. Одна из них — в первом цилиндре — зависла в открытом положении. То есть, топливо лилось постоянно. Кстати, поршень в этом цилиндре был поврежден сильнее всего. Почему такое случается? Как правило — от изношенности или, чаще, засоренности форсунок из-за некачественного топлива. Перестраховаться от такого явления на сто процентов, наверное, невозможно. Но все же можно снизить вероятность его наступления. Часто, когда одна или несколько форсунок начинают неправильно работать, звук мотора становится жестче. Правда, услышать это на ходу зачастую проблематично даже для опытного человека. То есть, остается профилактика.
Действия
В идеале, некоторые производители рекомендуют менять форсунки после 120-150 тыс. км пробега. Понятно, что в наших условиях такое расточительство не особо приемлемо — например, для дизельного VW Passat B5 одна форсунка стоит около 200 латов. Но хотя бы промыть форсунки при таком пробеге — наверное, не помешает. Наименее затратный вариант — добавление в топливо моющей присадки, а наиболее действенный — проверка состояния “живьем”, и промывка на стенде (в среднем — 25-50 латов за форсунку). Кстати, если приходилось заправляться сомнительным топливом, то промывка может потребоваться уже через 20-30 тыс. км. Кстати, если в морозы дизель плохо заводился по утрам, компрессия, а также все его узлы и агрегаты были, вроде, в порядке, одна из причин — частично засоренные форсунки. А если, например, двигатель плохо заводится “на горячую”, то один из вариантов — зависание запорного клапана, пока форсунка не остынет. То есть, при подобных симптомах во избежание вышеупомянутых последствий озадачиться состоянием форсунок заранее будет совсем не лишним.
Семен ЗАХАРОВ
R?ga автомобильная
Сами по себе дефекты в механической части двигателя, как известно, не появляются. Практика показывает: всегда есть причины повреждения и выхода из строя тех или иных деталей. Разобраться в них непросто, особенно, когда повреждены составляющие поршневой группы.
Поршневая группа — традиционный источник неприятностей, подстерегающих водителя, эксплуатирующего автомобиль, и механика, его ремонтирующего. Перегрев двигателя, небрежность в ремонте, и, пожалуйста, – повышенный расход масла, сизый дым, стук.
При «вскрытии» такого мотора неминуемо обнаруживаются задиры на поршнях, кольцах и цилиндрах. Вывод неутешителен — требуется дорогостоящий ремонт. И возникает вопрос: чем провинился двигатель, что его довели до такого состояния?
Двигатель, конечно, не виноват. Просто необходимо предвидеть, к чему приводят те или иные вмешательства в его работу. Ведь поршневая группа современного двигателя — «материя тонкая» во всех смыслах. Сочетание минимальных размеров деталей с микронными допусками и громадными силами давления газов, и инерции, действующими на них, способствует появлению и развитию дефектов, приводящих в конечном счете к выходу двигателя из строя.
Во многих случаях простая замена поврежденных деталей — не лучшая технология ремонта двигателя. Причина-то появления дефекта осталась, а раз так, то его повторение неминуемо.
Чтобы этого не случилось, грамотному мотористу, как гроссмейстеру, необходимо думать на несколько ходов вперед, просчитывая возможные последствия своих действий. Но и этого недостаточно — необходимо выяснить, почему возник дефект. А здесь без знания конструкции, условий работы деталей и процессов, происходящих в двигателе, как говорится, делать нечего. Поэтому, прежде чем анализировать причины конкретных дефектов и поломок, неплохо было бы знать…
Как работает поршень?
Поршень подвижная деталь, плотно перекрывающая цилиндр в поперечном сечении и перемещающаяся вдоль его оси. Поршень предназначен для циклического восприятия давления расширяющихся газов и преобразования его в поступательное механическое движение, воспринимаемое далее кривошипно-шатунным механизмом. современного двигателя — деталь на первый взгляд простая, но крайне ответственная и одновременно сложная. В его конструкции воплощен опыт многих поколений разработчиков.
И в какой-то степени поршень формирует облик всего двигателя. В одной из прошлых публикаций мы даже высказали такую мысль, перефразировав известный афоризм: «Покажи мне поршень, и я скажу, что у тебя за двигатель».
Итак, с помощью поршня в двигателе решается несколько задач. Первая и главная — воспринять давление газов в цилиндре и передать возникшую силу давления через поршневой палец шатуну. Далее эта сила будет преобразована коленвалом в крутящий момент двигателя.
Решить задачу преобразования давления газов во вращательный момент невозможно без надежного уплотнения движущегося поршня в цилиндре. Иначе неминуем прорыв газов в картер двигателя и попадание масла из картера в камеру сгорания.
Для этого на поршне организован уплотнительный пояс с канавками, в которые установлены компрессионные и маслосъемные кольца специального профиля. Кроме того, для сброса масла в поршне выполнены особые отверстия.
Но этого мало. В процессе работы днище поршня (огневой пояс), непосредственно контактируя с горячими газами, нагревается, и это тепло надо отводить. В большинстве двигателей задача охлаждения решается с помощью тех же поршневых колец — через них тепло передается от днища стенке цилиндра и далее — охлаждающей жидкости. Однако в некоторых наиболее нагруженных конструкциях делают дополнительное масляное охлаждение поршней, подавая масло снизу на днище с помощью специальных форсунок. Иногда применяют и внутреннее охлаждение — форсунка подает масло во внутреннюю кольцевую полость поршня.
Для надежного уплотнения полостей от проникновения газов и масла поршень должен удерживаться в цилиндре так, чтобы его вертикальная ось совпадала с осью цилиндра. Разного рода перекосы и «перекладки», вызывающие «болтание» поршня в цилиндре, негативно сказываются на уплотняющих и теплопередающих свойствах колец, увеличивают шумность работы двигателя.
Удерживать поршень в таком положении призван направляющий пояс — юбка поршня. Требования к юбке весьма противоречивы, а именно: необходимо обеспечить минимальный, но гарантированный, зазор между поршнем и цилиндром как в холодном, так и в полностью прогретом двигателе.
Задача конструирования юбки усложняется тем, что температурные коэффициенты расширения материалов цилиндра и поршня различны. Мало того, что они изготовлены из различных металлов, их температуры нагрева разнятся во много раз.
Чтобы нагретый поршень не заклинило, в современных двигателях принимают меры по компенсации его температурных расширений.
Во-первых, в поперечном сечении юбке поршня придается форма эллипса, большая ось которого перпендикулярна оси пальца, а в продольном — конуса, сужающегося к днищу поршня. Такая форма позволяет обеспечить соответствие юбки нагретого поршня стенке цилиндра, препятствуя заклиниванию.
Во-вторых, в ряде случаев в юбку поршня заливают стальные пластины. При нагревании они расширяются медленнее и ограничивают расширение всей юбки.
Использование легких алюминиевых сплавов для изготовления поршней — не прихоть конструкторов. На высоких частотах вращения, характерных для современных двигателей, очень важно обеспечить низкую массу движущихся деталей. В подобных условиях тяжелому поршню потребуется мощный шатун, «могучий» коленвал и слишком тяжелый блок с толстыми стенками. Поэтому альтернативы алюминию пока нет, и приходится идти на всяческие ухищрения с формой поршня.
В конструкции поршня могут быть и другие «хитрости». Одна из них — обратный конус в нижней части юбки, призванный уменьшить шум из-за «перекладки» поршня в мертвых точках. Улучшить смазку юбки помогает специальный микропрофиль на рабочей поверхности — микроканавки с шагом 0,2-0,5 мм, а уменьшить трение — специальное антифрикционное покрытие. Профиль уплотнительного и огневого поясов тоже определенный — здесь самая высокая температура, и зазор между поршнем и цилиндром в этом месте не должен быть ни большим (возрастает вероятность прорыва газов, опасность перегрева и поломки колец), ни маленьким (велика опасность заклинивания). Нередко стойкость огневого пояса повышается анодированием.
Все, что мы рассказали, — далеко не полный перечень требований к поршню. Надежность его работы зависит и от сопряженных с ним деталей: поршневых колец (размеры, форма, материал, упругость, покрытие), поршневого пальца (зазор в отверстии поршня, способ фиксации), состояния поверхности цилиндра (отклонения от цилиндричности, микропрофиль). Но уже становится ясно, что любое, даже не слишком значительное, отклонение в условиях работы поршневой группы быстро приводит к появлению дефектов, поломкам и выходу двигателя из строя. Чтобы в дальнейшем качественно отремонтировать двигатель, необходимо не только знать, как устроен и работает поршень, но и уметь по характеру повреждения деталей определить, почему, к примеру, возник задир или…
Почему прогорел поршень?
Анализ различных повреждений поршней показывает, что все причины дефектов и поломок делятся на четыре группы: нарушение охлаждения, недостаток смазки, чрезмерно высокое термосиловое воздействие со стороны газов в камере сгорания и механические проблемы.
Вместе с тем многие причины возникновения дефектов поршней взаимосвязаны, как и функции, выполняемые его различными элементами. Например, дефекты уплотняющего пояса вызывают перегрев поршня, повреждения огневого и направляющего поясов, а задир на направляющем поясе ведет к нарушению уплотнительных и теплопередающих свойств поршневых колец.
В конечном счете это может спровоцировать прогар огневого пояса.
Отметим также, что практически при всех неисправностях поршневой группы возникает повышенный расход масла. При серьезных повреждениях наблюдаются густой, сизый дым выхлопа, падение мощности и затрудненный запуск из-за низкой компрессии. В некоторых случаях прослушивается стук поврежденного поршня, особенно на непрогретом двигателе.
Иногда характер дефекта поршневой группы удается определить и без разборки двигателя по указанным выше внешним признакам. Но чаще всего такая «безразборная» диагностика неточна, поскольку разные причины нередко дают практически один и тот же результат. Поэтому возможные причины дефектов требуют детального анализа.
Нарушение охлаждения поршня — едва ли не самая распространенная причина появления дефектов. Обычно это происходит при неисправности системы охлаждения двигателя (цепочка: «радиатор-вентилятор-датчик включения вентилятора-водяной насос») либо из-за повреждения прокладки головки блока цилиндров. Во всяком случае, как только стенка цилиндра перестает омываться снаружи жидкостью, ее температура, а вместе с ней и температура поршня, начинают расти. Поршень расширяется быстрее цилиндра, к тому же неравномерно, и в конечном итоге зазор в отдельных местах юбки (как правило, вблизи отверстия под палец) становится равным нулю. Начинается задир — схватывание и взаимный перенос материалов поршня и зеркала цилиндра, а при дальнейшей работе двигателя происходит заклинивание поршня.
После остывания форма поршня редко приходит в норму: юбка оказывается деформированной, т.е. сжатой по большой оси эллипса. Дальнейшая работа такого поршня сопровождается стуком и повышенным расходом масла.
В некоторых случаях задир на поршне распространяется на уплотнительный пояс, завальцовывая кольца в канавки поршня. Тогда цилиндр, как правило, выключается из работы (слишком мала компрессия), а говорить о расходе масла вообще трудно, поскольку оно будет просто вылетать из выхлопной трубы.
Недостаточная смазка поршня чаще всего характерна для пусковых режимов, особенно при низких температурах. В подобных условиях топливо, поступающее в цилиндр, смывает масло со стенок цилиндра, и возникают задиры, которые располагаются, как правило, в средней части юбки, на ее нагруженной стороне.
Двухсторонний задир юбки обычно встречается при длительной работе в режиме масляного голодания, связанного с неисправностями системы смазки двигателя, когда количество масла, попадающего на стенки цилиндров, резко уменьшается.
Недостаток смазки поршневого пальца — причина его заклинивания в отверстиях бобышек поршня. Такое явление характерно только для конструкций с пальцем, запрессованным в верхнюю головку шатуна. Этому способствует малый зазор в соединении пальца с поршнем, поэтому «прихваты» пальцев чаще наблюдаются у относительно новых двигателей.
Чрезмерно высокое термосиловое воздействие на поршень со стороны горячих газов в камере сгорания — частая причина дефектов и поломок. Так, детонация приводит к разрушению перемычек между кольцами, а калильное зажигание — к прогарам.
У дизелей чрезмерно большой угол опережения впрыска топлива вызывает очень быстрое нарастание давления в цилиндрах («жесткость» работы), что также может вызвать поломку перемычек. Такой же результат возможен и при использовании различных жидкостей, облегчающих запуск дизеля.
Днище и огневой пояс могут повреждаться при слишком высокой температуре в камере сгорания дизеля, вызванной неисправностью распылителей форсунок. Аналогичная картина возникает и при нарушении охлаждения поршня — например, при закоксовывании форсунок, подающих масло к поршню, имеющему кольцевую полость внутреннего охлаждения. Задир, возникающий на верхней части поршня, может распространяться и на юбку, захватывая поршневые кольца.
Механические проблемы, пожалуй, дают самое большое разнообразие дефектов поршневой группы и их причин. Например, абразивный износ деталей возможен как «сверху», из-за попадания пыли через рваный воздушный фильтр, так и «снизу», при циркуляции абразивных частиц в масле. В первом случае наиболее изношенными оказываются цилиндры в верхней их части и компрессионные поршневые кольца, а во втором — маслосъемные кольца и юбка поршня. Кстати, абразивные частицы в масле могут появиться не столько от несвоевременного обслуживания двигателя, сколько в результате быстрого износа каких-либо деталей (например, распредвала, толкателей и др.).
Редко, но встречается эрозия поршня у отверстия «плавающего» пальца при выскакивании стопорного кольца. Наиболее вероятные причины этого явления — непараллельность нижней и верхней головок шатуна, приводящая к значительным осевым нагрузкам на палец и «выбиванию» стопорного кольца из канавки, а также использование при ремонте двигателя старых (потерявших упругость) стопорных колец. Цилиндр в таких случаях оказывается поврежденным пальцем настолько, что уже не подлежит ремонту традиционными методами (расточка и хонингование).
Иногда в цилиндр могут попадать посторонние предметы. Такое чаще всего происходит при неаккуратной работе во время обслуживания или ремонта двигателя. Гайка или болт, оказавшись между поршнем и головкой блока, способны на многое, в том числе и просто «провалить» днище поршня.
Рассказ о дефектах и поломках поршней можно продолжать очень долго. Но и того, что уже сказано, достаточно, чтобы сделать некоторые выводы. По крайней мере, уже можно определить…
Как избежать прогара?
Правила очень просты и вытекают из особенностей работы поршневой группы и причин появления дефектов. Тем не менее, многие водители и механики забывают о них, что называется, со всеми вытекающими последствиями.
Хотя это и очевидно, но при эксплуатации все-таки необходимо: содержать в исправности системы питания, смазки и охлаждения двигателя, вовремя их обслуживать, излишне не нагружать холодный двигатель, избегать применения некачественного топлива, масла и несоответствующих фильтров и свечей зажигания. А если что-то с двигателем не так, не доводить его «до ручки», когда ремонт уже не обойдется «малой кровью».
При ремонте необходимо добавить и неукоснительно выполнять еще несколько правил. Главное, на наш взгляд, — нельзя стремиться к обеспечению минимальных зазоров поршней в цилиндрах и в замках колец. Эпидемия «болезни малых зазоров», когда-то поразившая многих механиков, все еще не прошла. Более того, практика показала, что попытки «поплотнее» установить поршень в цилиндре в надежде на уменьшение шума двигателя и увеличение его ресурса почти всегда заканчиваются обратным: задирами поршней, стуками, расходом масла и повторным ремонтом. Правило «лучше зазор на 0,03 мм больше, чем на 0,01 мм меньше» работает всегда и для любых двигателей.
Остальные правила традиционны: качественные запасные части, правильная обработка изношенных деталей, тщательная мойка и аккуратная сборка с обязательным контролем на всех этапах.
Влияние рабочей температуры гильзы цилиндра на потери на трение и выбросы двигателя в месте соединения поршневых колец
https://doi.org/10.1016/j.apenergy.2017.01.098Получить права и содержание температура влияет на потери на трение.Оптимальная температура футеровки повышает энергоэффективность и снижает выбросы.
Температура футеровки почти не зависит от вязкостного сдвига смазки.
Это означает, что оптимальные условия не зависят от частоты вращения двигателя.
Abstract
Несмотря на обширные исследования альтернативных методов, ожидается, что двигатель внутреннего сгорания останется основным источником движения транспортных средств в обозримом будущем. По-прежнему существуют значительные возможности для повышения эффективности использования топлива, что напрямую снижает вредные выбросы. Следовательно, снижение тепловых потерь и потерь на трение постепенно становится приоритетом.На систему поршень-цилиндр приходится основная доля всех потерь, а также выбросов. Поэтому потребность в комплексном подходе, особенно прогностического характера, имеет важное значение. В данной статье рассматривается этот вопрос, в частности роль температуры гильзы цилиндра, которая влияет как на тепловые, так и на фрикционные характеристики системы поршень-цилиндр. Исследование сосредоточено на верхнем компрессионном кольце, чья важная уплотнительная функция делает его основным источником потерь мощности на трение и важным компонентом в защите от дальнейшего прорыва вредных газов.Такой комплексный подход до сих пор не описан в литературе. Исследование показывает, что температура гильзы цилиндра имеет решающее значение для снижения потерь мощности, а также для снижения выбросов углеводородов (НС) и оксидов азота (NOx) в месте соединения компрессионного кольца и гильзы цилиндра. Из результатов следует существование оптимального диапазона рабочих температур гильз, не зависящего от частоты вращения двигателя (по крайней мере, в исследованных случаях), для минимизации потерь на трение. В сочетании с изучением выбросов NOx и углеводородов контроль температуры футеровки может помочь смягчить потери мощности на трение и сократить выбросы.
Ключевые слова
Ключевые слова
Внутреннее сгорание (IC) Engine
Цилиндр Линэнер
Поршневое кольцо
Трение
Обоснование трения
Средство трения Эффективное давление (FMEP)
Потеря энергии
Расход топлива
Рекомендуемые изделия из топлива (0)
2017 Автор(ы). Опубликовано Elsevier Ltd.
Рекомендованные статьи
Ссылки на статьи
Двигатели внутреннего сгорания — Викиверситет
Двигатели внутреннего сгорания (или двигатели внутреннего сгорания или ДВС, как они могут также называться) используются в повседневной жизни и могут быть найдены в: легковые автомобили; грузовые автомобили; мотоциклы; легкие самолеты; строительная техника и транспортные средства; железнодорожные локомотивы; стационарные энергосистемы; и лодки и корабли всех размеров.Изучение двигателей превратилось в отрасль машиностроения.
Существует два типа двигателей внутреннего сгорания,
- Четырехтактный двигатель и
- Двухтактный двигатель
Также двигатели можно классифицировать по циклам, которым они следуют, как указано ниже.
- Дизельный двигатель
- Бензиновый двигатель
Четырехтактные двигатели, как следует из названия, имеют всего четыре различных цикла, а именно
a. впуск
б.сжатие
в. зажигание/расширение
d. выхлоп
В двухтактном режиме всего два цикла, и каждый из них имеет два цикла, работающих одновременно.
а. впуск/выпуск
б. зажигание/сжатие
Несколько определений:
ВМТ: Верхняя мертвая точка. Это самая верхняя часть, до которой может дотянуться поршень в вертикальном двигателе.
НМТ: Нижняя мертвая точка. Это самая нижняя часть, до которой может дотянуться поршень в вертикальном двигателе.
Степень сжатия Двигатель внутреннего сгорания — это, по сути, насос, который сжимает воздушно-топливную смесь (или просто «воздух» в случае двигателей с непосредственным впрыском), а затем воспламеняет ее, так что она расширяется и производит механическую энергию.Степень сжатия в основном говорит о том, насколько двигатель сжимает определенный объем воздуха, который он всасывает. Двигатель со степенью сжатия 12:1 означает, что на каждые 12 единиц объема всасываемого воздуха поршень сжимает этот воздух до 1 единицы объема. Чем больше воздуха выдавливается в камеру сгорания, тем больше энергии вырабатывается на мощность двигателя на такте расширения.
Одним из факторов, ограничивающих увеличение степени сжатия, является детонация (известная как детонация или стук в двигателе), когда вместо контролируемого горения воздушно-топливная смесь взрывается, потенциально повреждая двигатель.Кроме того, двигатель с более высокой степенью сжатия, как правило, имеет меньший зазор между поршнем в верхней мертвой точке (ВМТ) и полностью открытыми клапанами, а работа на высоких оборотах может привести к плаванию клапана, что может привести к контакту между клапанами и поршнем.
Коэффициент сжатия = (рабочий объем + клиренс)/клиренс
Рабочий объем = объем поршня, проходимого при совершении одного полного хода от ВМТ до НМТ
Зазор = Объем камеры сгорания, когда поршень находится в ВМТ
Бензиновый двигатель Бензиновые двигатели, также известные как двигатели с искровым зажиганием, нуждаются во внешнем источнике энергии для воспламенения топлива как для запуска, так и для работы двигателя.Как следует из обоих названий, этот двигатель использует свечи зажигания для обеспечения искры зажигания и бензин (бензин) в качестве топлива.
Системы бензинового двигателя
1. Топливная система подает топливо из бензобака в карбюратор. Там он смешивается с воздухом и засасывается в цилиндры двигателя. При электронном впрыске топливо поступает прямо из бака в цилиндры с помощью электронного компьютера.
2. Система зажигания подает искры для воспламенения топливной смеси в цилиндрах.С помощью катушки зажигания и прерывателя контактов он заряжает 12-вольтовую батарею, которая, в свою очередь, выдает импульсы в 20 000 вольт. Они проходят через распределитель к свечам зажигания в цилиндрах, где создают искры. Воспламенение топлива в цилиндрах дает температуру 700°С и выше.
3. В системе водяного охлаждения, в которой вода циркулирует по каналам в блоке цилиндров, отбирая тепло. Он протекает по трубам в радиаторе, который охлаждается нагнетаемым вентилятором воздухом.
4. Система смазки также немного снижает нагрев, но ее функция заключается в том, чтобы покрывать движущиеся части маслом, которое под давлением подается к распределительному валу, коленчатому валу и приводу клапанов.
5. Карбюратор является сердцем бензинового двигателя. Он измеряет топливно-воздушную смесь в точных пропорциях. В старых карбюраторах опережение зажигания осуществляется путем измерения разницы давлений снаружи и внутри карбюратора. Также измеряется величина опережения газа.Остатки двигателя, которые могут быть угарным газом или несгоревшими углеводородами, показывают, насколько хорошо работает карбюратор.
Классификация бензиновых двигателей
Поршневые двигатели классифицируются по нескольким признакам. Некоторые из них такие:
1. По способу охлаждения,
а. Двигатели с воздушным охлаждением: Тепло от двигателя излучается в окружающий воздух. Обычно используются алюминиевые ребра, так как они являются хорошими проводниками тепла.Ребра увеличивают общую площадь поверхности контакта с окружающим воздухом, обеспечивая максимальное рассеивание тепла.
б. Двигатели с водяным охлаждением: В этих двигателях охлаждающая жидкость/вода циркулирует через рубашки, расположенные на цилиндре, для отвода тепла.
2. По количеству ударов,
а. Двухтактные двигатели : завершает термодинамический цикл за два хода поршня (один оборот кривошипа).
б. 4-тактные двигатели: завершает термодинамический цикл за четыре хода поршня (два оборота кривошипа).
3. По расположению цилиндров,
а. Рядное расположение цилиндров: все цилиндры расположены по прямой линии.
б. V-образный двигатель или V-образный двигатель: два цилиндра наклонены друг к другу под углом 90 градусов.
4. В зависимости от устройства клапана,
а. Одинарный верхний распределительный вал (SOHC)
б. Двойной верхний распределительный вал (DOHC)
Детали бензинового двигателя
Ниже перечислены важные части бензинового двигателя: 1. Цилиндры 2. Блок цилиндров 3. Поршень и шатуны 4. Головка цилиндра Картер 5. Клапаны 6. Коленчатый вал Маховик 7. Выхлопная система 8. Распределительный вал Топливная система 9. Система смазки 10. Система зажигания
Работа бензинового двигателя
Обычно автомобили с бензиновым/бензиновым двигателем имеют четыре такта, поскольку они более эффективны, чем двухтактные двигатели, и обеспечивают полное сгорание топлива для оптимального использования.Четырехтактный двигатель имеет четыре такта, а именно такты впуска, сжатия, рабочего хода и такта выпуска.
1. Такт всасывания или впуска — первоначально при запуске двигателя поршень движется вниз к НМТ цилиндра, что создает низкое давление вверху. Благодаря этому открывается впускной клапан и смесь, содержащая пары бензина и воздух, всасывается в цилиндр. Именно через карбюратор смешивается соотношение бензин/бензин и воздух.
2. Такт сжатия – после этого такта впускной клапан закрывается.Теперь поршень перемещается к верхней мертвой точке цилиндра, тем самым сжимая топливную смесь до одной десятой ее первоначального объема. Температура и давление внутри цилиндра увеличиваются из-за сжатия.
3. Рабочий ход – во время этого хода впускной и выпускной клапаны остаются закрытыми. Когда поршень достигает верхнего положения (ВМТ), свеча зажигания производит электрическую искру. Сгорание запускается системой зажигания, которая выжигает искру высокого напряжения через сменный воздушный зазор, называемый свечой зажигания.Образовавшаяся искра вызывает взрыв топливно-воздушной смеси. Горячие газы расширяются и заставляют поршень двигаться вниз. Поршень соединен со штоком поршня, а шток поршня с коленчатым валом. Все они двигают друг друга из-за связи между ними. Коленчатый вал соединен с колесами автомобиля. При движении коленчатого вала колеса вращаются и двигают автомобиль.
4. Такт выпуска — в этом такте выпускной клапан остается открытым в начале. Поршень вынужден двигаться вверх из-за полученного импульса.Это заставляет газы двигаться через выпускной клапан в атмосферу. Теперь выпускной клапан закрывается, а впускной открывается. После этого четыре такта двигателя повторяются снова и снова.
Применение: Эти двигатели широко используются в транспортных средствах, переносных электростанциях для питания насосов и другого сельскохозяйственного оборудования. Многие небольшие лодки, самолеты, грузовики и автобусы также используют его.
Будущее Область применения: Постоянно проводятся исследования, направленные на повышение топливной экономичности, снижение выбросов загрязняющих веществ и повышение легкости и компактности.Недавно инженеры Бирмингемского университета создали самый маленький бензиновый двигатель, способный заменить обычные аккумуляторы. Двигатель настолько крошечный, что с ним можно обращаться на кончике пальца.
Дизельный двигатель
Как и бензиновый двигатель, дизель представляет собой двигатель внутреннего сгорания, который преобразует химическую энергию топлива в механическую энергию, вызывающую возвратно-поступательное движение внутри цилиндров. Поршни соединены с коленчатым валом двигателя, которые обеспечивают движение, необходимое для приведения в движение колес автомобиля.Как в бензиновых, так и в дизельных двигателях энергия высвобождается в виде серии небольших взрывов, известных как возгорание. Топливо вступает в химическую реакцию с кислородом воздуха, который забирается во время такта впуска двигателя. Зажигание в бензиновых двигателях происходит за счет искр от свечей зажигания, тогда как в дизельных двигателях топливо воспламеняется за счет теплоты сжатия. Воздух нагревается при сжатии.
Типы дизельных двигателей
Дизельные двигатели могут быть четырехтактными или двухтактными.
Четырехтактный дизельный двигатель
Четырехтактный дизельный двигатель работает следующим образом:
1. Такт впуска или всасывания начинается, когда поршень всасывает воздух в цилиндр через впускной клапан. Когда поршень достигает дна цилиндра, впускной клапан закрывается, задерживая воздух внутри цилиндра.
2. Такт сжатия начинается, когда поршень движется вверх по цилиндру, сжимая захваченный воздух.Давление повышается от 32 бар до 50 бар, а температура достигает 600 градусов по Цельсию.
3. Такт впрыска начинается где-то вблизи ВМТ такта сжатия, топливо впрыскивается в горячий воздух, воспламеняется и сгорает контролируемым образом за счет теплоты сжатия, что приводит к рабочему такту. 4. Такт выпуска начинается, когда поршень находится в НМТ, поршень вытесняет все сгоревшие газы через открытый выпускной клапан. В верхней части такта выпуска выпускной клапан закрывается, а впускной клапан открывается, готовый принять свежий заряд воздуха, который возвращает двигатель в исходную точку.Цикл повторяется снова.
Двухтактный дизель
Дизельный двигатель работает так же, как и четырехтактный дизельный двигатель, но сокращает четыре хода поршня до двухтактных один раз вверх и один раз вниз по цилиндру.
1. Когда поршень находится в верхней части цилиндра, он находится на такте сжатия. Цилиндр заполнен сжатым перегретым воздухом. Дизельное топливо впрыскивается и воспламеняется. Поршень движется вниз по цилиндру для своего рабочего хода.Когда поршень приближается к нижней части своего рабочего хода, выпускные клапаны открываются, и большая часть сгоревших газов выбрасывается из цилиндра. Теперь, когда поршень продолжает двигаться вниз по цилиндру, он открывает ряд отверстий в стенке цилиндра. Через эти отверстия вдувается сжатый воздух, выталкивая оставшиеся сгоревшие газы. из баллона и наполнить его свежим воздухом.
2. Когда поршень движется обратно вверх, он блокирует впускные отверстия, задерживая заряд свежего воздуха в цилиндре.Хотя поршень совершил лишь немногим более одного хода, он уже завершил свой рабочий ход, процесс выпуска и цикл впуска. Когда поршень возвращается в цилиндр во время второго хода, он сжимает свежий воздух. Когда он достигает верхней части цилиндра происходит впрыск и сгорание, начиная цикл заново. Двухтактный двигатель производит один рабочий такт за каждый полный цикл, а четырехтактный производит один рабочий такт каждые четыре такта.
Экспериментальный термический анализ поршня и стенки цилиндра дизельного двигателя
Знание температуры поршня и стенки цилиндра необходимо для оценки термических напряжений в различных точках; это дает дизайнеру идею позаботиться о более слабом поперечном сечении.Наряду с этим, эта температура также позволяет рассчитывать потери тепла через поршень и стенку цилиндра. Предложенная методология была успешно применена к четырехтактному дизельному двигателю с непосредственным впрыском топлива и водяным охлаждением и позволяет оценить температуру поршня и стенок цилиндра. Описанная здесь методология сочетает в себе численное моделирование, основанное на моделях FEM, и экспериментальные процедуры, основанные на использовании термопар. Целями данного исследования являются измерение деформации поршня, температуры и радиальных термических напряжений после термического нагружения.Чтобы проверить достоверность модели теплопередачи, измерьте температуру прямым измерением с помощью проволоки термопары в нескольких точках на поршне и стенке цилиндра. Чтобы предотвратить запутывание проводов термопары, был разработан соответствующий проход. Для КЭ модели на разных поверхностях задавались соответствующие усредненные тепловые граничные условия, такие как коэффициенты теплопередачи. Исследование включает влияние теплопроводности материала поршня, поршневых колец и стенки камеры сгорания.Результаты показывают изменение температуры, напряжения и деформации в различных точках поршня.
1. Введение
Для правильной работы дизельного двигателя внутреннего сгорания требуется точное распределение температуры поршня, поскольку температура поршня оказывает важное влияние на процесс зажигания двигателя, задержку времени зажигания, скорость горения, термический КПД и выработку загрязняющие вещества. Знание теплообмена в двигателях внутреннего сгорания важно для понимания таких систем [1, 2].Он способствует разработке и проектированию двигателей, моделированию процессов и сокращению выбросов. В двигателе поршень испытывает большие силы из-за давления в камере сгорания и тепловой нагрузки, которые возникают в процессе сгорания и из-за огромного температурного градиента между потоками впускных и выхлопных газов [3–6], поэтому важно гарантировать долговечность таких компонентов двигателя, как поршень, поршневые кольца, клапаны и стенки цилиндра, чтобы избежать деформации корпуса двигателя и улучшить конструкцию двигателя, связанную с весом и потреблением вспомогательной энергии.В случае поршня и цилиндра двигателя такие знания необходимы для полного понимания теплового потока, температуры и распределения этих параметров. Обычная процедура, используемая некоторыми авторами, заключается в аппроксимации средней температуры распределения одним или несколькими (очень немногими) локальными измерениями, полученными термопарами [1, 7]. Эти подходы неявно допускают ошибки, которые могут быть приемлемыми для тепловых балансов, но могут привести к неопределенностям в циклах моделирования или анализах распределения температуры.Многие из этих моделей включают температуру газовой стенки в качестве переменной для получения теплового потока через стенки цилиндра [8]. Было предложено множество математических моделей, включая корреляции, основанные на анализе размерностей, которые получили широкое признание. Хотя модели предполагают разные потоки тепла, их эволюция в цикле аналогична. Кроме того, коды метода конечных элементов (FEM), используемые для моделирования теплопередачи, требуют оценки температуры для обеспечения граничных условий, при которых сходимость достигается посредством итеративного процесса [7].Успешно разработана и смоделирована конечно-элементная модель бензинового искрового двигателя, в которой проанализирована теплопередача в процессе сгорания и получено распределение температуры по основным компонентам двигателя [9]. Кроме того, для термического анализа требуется температура стенки со стороны газа для оценки распределения температуры и термомеханического поведения компонентов с использованием термобарьерного покрытия [10–13]. Другие исследователи, выявив одну корреляцию для одного малогабаритного двигателя воздушного охлаждения [14], признают, что эти параметры корреляции недействительны для другого малогабаритного двигателя воздушного охлаждения с аналогичными характеристиками [15].В большинстве анализов теплопередачи температура внешней поверхности, от которой отводится тепло, не измеряется. Это относится к двигателям с водяным охлаждением, где эта температура часто принимается равной температуре охлаждающей жидкости или рассчитывается на основе гипотез, характерных для двигателей с водяным охлаждением [16] и обычно предполагающих постоянную температуру для всех рабочих точек. Этот подход не может быть экстраполирован на двигатели с воздушным охлаждением, так как температурное поле на внутренней поверхности меняется в зависимости от условий эксплуатации [17].Были опубликованы некоторые исследования, касающиеся теплообмена в двигателях с воздушным охлаждением, и большинство из них рассматривают двухтактные двигатели и/или двигатели с искровым зажиганием [18–20].
В статье предложена методика оценки температур поршня и стенки цилиндра, деформаций тела поршня и радиальных напряжений четырехтактного одноцилиндрового дизельного двигателя с непосредственным впрыском топлива и водяным охлаждением. Эти температуры были получены путем моделирования и экспериментальной установки с помощью термопар и других датчиков и других расчетов, которые относятся к этому двигателю.
2. Описание двигателя и методика эксперимента
Экспериментальное исследование проводилось на четырехтактном одноцилиндровом двигателе с воспламенением от сжатия и непосредственным впрыском. Основные характеристики этого двигателя приведены в таблице 1, а вид поршня и цилиндра в разрезе показан на рисунке 1. Экспериментальные измерения охватывали четыре различных режима нагрузки, а именно отсутствие нагрузки, половинная нагрузка, нагрузка на три четверти и полная нагрузка. нагрузка двигателя. Температуру поршня можно оценить прямым измерением с помощью термопары, а также с помощью численного метода, состоящего из метода конечных элементов.Цель состоит в том, чтобы получить обобщенный метод (FEM) для анализа температурного поля, деформации поршня и соответствующих термических напряжений, чтобы смоделированные температуры можно было проверить прямыми измеренными температурами.
|
Оставить ответ