Тормозная система автомобиля устройство и работа: Тормозная система автомобиля: устройство, виды

Содержание

Тормозная система автомобиля. Устройство и работа реферат 2010 по транспорту

Министерство образования и науки РФ Волгоградский Государственный Технический Университет (ВолгГТУ) Кафедра Автомобильный транспорт Основы безопасного управления автомобилем Реферат «Тормозная система автомобиля. Устройство и работа» Выполнил: студент гр. АЭ-513 Солдатов П.В. Проверил: ст. пр. Еронтаев В.В. Волгоград 2011 Запасная тормозная система предназначена для остановки автомобиля в случае отказа рабочей тормозной системы. Она оказывает меньшее тормозящее действие на автомобиль, чем рабочая система. Функции запасной системы может выполнять чаще всего исправная часть рабочей тормозной системы или полностью стояночная система. Стояночная тормозная система служит для удерживания остановленного автомобиля на месте, чтобы исключить его самопроизвольное трогание (например, на уклоне). Управляется стояночная тормозная система рукой водителя через рычаг ручного тормоза. Вспомогательная тормозная система используется в виде тормоза- замедлителя на автомобилях большой грузоподъемности (МАЗ, КрАЗ, КамАЗ) с целью снижения нагрузки при длительном торможении на рабочую тормозную систему, например на длинном спуске в горной или холмистой местности.

Устройство тормозной системы В общем виде тормозная система состоит из тормозных механизмов и их привода. Тормозные механизмы при работе системы препятствуют вращению колес, в результате чего между колесами и дорогой возникает тормозная сила, останавливающая автомобиль. Тормозные механизмы (см. рис. 1) 2 размещаются непосредственно на передних и задних колесах автомобиля. Тормозной привод передает усилие от ноги водителя на тормозные механизмы. Он состоит из главного тормозного цилиндра 5 с педалью 4 тормоза, гидровакуумного усилителя 1 и соединяющих их трубопроводов 3, заполненных жидкостью. Работает тормозная система следующим образом. При нажатии на педаль тормоза поршень главного цилиндра давит на жидкость, которая перетекает к колесным тормозным механизмам. Поскольку жидкость практически не сжимается, то, перетекая по трубкам к тормозным механизмам, она передает усилие нажатия. Тормозные механизмы преобразуют это усилие в сопротивление вращению колес, и наступает торможение. Если педаль тормоза отпустить, жидкость перетечет обратно к главному тормозному цилиндру и колеса растормаживаются.
Гидровакуумный усилитель 1 облегчает управление тормозной системой, так как создает дополнительное усилие, передаваемое на тормозные механизмы колес. Рис. 1- Схема тормозной системы автомобиль барабанный тормоз Для повышения надежности тормозных систем автомобилей в приводе применяют различные устройства, позволяющие сохранить ее работоспособность при частичном отказе тормозной системы. Так, на автомобиле ГАЗ-24 «Волга» для этого применяют разделитель, который автоматически отключает при торможении неисправную часть тормозного привода в момент возникновения отказа. Рассмотренный принцип действия тормозной системы позволяет представить взаимодействие основных элементов тормозной системы, имеющей гидравлический привод. Если в приводе тормозной системы используется сжатый воздух, то такой привод называется пневматическим, если жесткие тяги или металлические тросы — механическим. Действие указанных приводов имеет существенные отличия от гидропривода и рассматривается ниже. Основные типы колесных тормозных механизмов В тормозных системах автомобилей наиболее распространены фрикционные тормозные механизмы, принцип действия которых основан на силах трения вращающихся деталей о невращающиеся.
По форме вращающейся детали колесные тормозные механизмы делят на барабанные и дисковые. Барабанный тормозной механизм с гидравлическим приводом (рис. 2 а) состоит из двух колодок 2 с фрикционными накладками, установленных на опорном диске 3. Нижние концы колодок закреплены шарнирно на опорах 5, а верхние упираются через стальные сухари в поршни разжимного колесного цилиндра 1. Стяжная пружина 6 прижимает колодки к поршням цилиндра 1, обеспечивая зазор между колодками и тормозным барабаном 4 в нерабочем положении тормоза. При поступлении жидкости из привода в колесный цилиндр 1 его поршни расходятся и раздвигают колодки до соприкосновения с тормозным барабаном, который вращается вместе со ступицей колеса. Возникающая сила трения колодок о барабан вызывает затормаживание колеса. После прекращения давления жидкости на поршни колесного цилиндра стяжная пружина 11 возвращает колодки в исходное положение и торможение прекращается. Рассмотренная конструкция барабанного тормоза способствует неравномерному износу передней и задней по ходу движения колодок.
Это происходит в результате того, что при движении вперед в момент торможения передняя колодка работает против вращения колеса и прижимается к барабану с большей силой, чем задняя. Поэтому, чтобы уравнять износ передней и задней колодок, длину передней накладки делают больше, чем задней, или рекомендуют менять местами колодки через определенный срок. тормозной путь; — меньшие вес и размеры; — повышается чувствительность тормозов; время срабатывания уменьшается — изношенные колодки просто заменить, на барабанных приходится предпринимать усилия на подгонку колодок чтобы одеть барабаны; — около 70% кинетической энергии автомобиля гасится передними тормозами, задние дисковые тормоза позволяют снизить нагрузку на передние диски; — температурные расширения не влияют на качество прилегания тормозных поверхностей. Гидравлический привод тормозов Тормозную систему с гидравлическим приводом тормозов применяют на всех легковых и некоторых грузовых автомобилях. Она выполняет одновременно функции рабочей, запасной и стояночной систем.
Чтобы повысить надежность тормозной системы на легковых автомобилях ВАЗ, АЗЛК, ЗАЗ применяют двухконтурный гидравлический привод, который состоит из двух независимых приводов, действующих от одного главного тормозного цилиндра на тормозные механизмы отдельно передних и задних колес. На автомобиле ГАЗ-24 с этой же целью применяют в приводе тормозов разделитель, позволяющий использовать исправную часть тормозной системы в качестве запасной, если в другой части тормозной системы произошло нарушение герметичности. Главный тормозной цилиндр (рис.4) приводится в действие от тормозной педали, установленной на кронштейне кузова. Корпус 2 главного цилиндра выполнен совместно с резервуаром для тормозной жидкости. Внутри цилиндра находится алюминиевый поршень 10 с уплотнительным резиновым кольцом. Поршень может перемещаться под действием толкателя 1, соединенного шарнирно с педалью. Рис. 4 — Главный тормозной цилиндр Днище поршня упирается через стальную шайбу в уплотнительную манжету 9, прижимаемую пружиной 8.
Она же прижимает к гнезду впускной клапан 7, внутри которого расположен нагнетательный клапан 6. Внутренняя полость цилиндра сообщается с резервуаром компенсационным 4 и перепускным 3 отверстиями. В крышке резервуара сделано резьбовое отверстие для заливки жидкости, закрываемое пробкой 5. При нажатии на тормозную педаль под действием толкателя 1 поршень с манжетой перемещается и закрывает отверстие 4, вследствие чего давление жидкости в цилиндре увеличивается, открывается нагнетательный клапан 6 и жидкость поступает к тормозным механизмам. Если отпустить педаль, то давление жидкости в приводе снижается, и она перетекает обратно в цилиндр. При этом избыток жидкости через компенсационное отверстие 4 возвращается в резервуар. В то же время пружина 8, действуя на клапан 7, поддерживает в системе привода небольшое избыточное давление после полного отпускания педали. При резком отпускании педали поршень 10 отходит в крайнее положение быстрее, чем перемещается манжета 9, и жидкость начинает заполнять освобождающуюся полость цилиндра.
Одновременно в полости возникает разрежение. Чтобы устранить его, в днище поршня имеются отверстия, сообщающие рабочую полость цилиндра с внутренней полостью поршня. Через них жидкость перетекает в зону разрежения, чем и устраняется нежелательный подсос воздуха в цилиндр. При дальнейшем перемещении манжеты жидкость вытесняется во внутреннюю полость поршня и далее через перепускное отверстие 3 в резервуар. Колесный тормозной цилиндр тормозного механизма заднего колеса состоит из чугунного корпуса, внутри которого помещены два алюминиевых поршня с уплотнительными резиновыми манжетами. В торцовую поверхность поршней для уменьшения изнашивания вставлены стальные сухари. Цилиндр с обеих сторон закрыт защитными резиновыми чехлами. Жидкость в полость цилиндра поступает через отверстие, в которое ввернут присоединительный штуцер. Для выпуска воздуха из полости цилиндра используется клапан прокачки, закрытый снаружи резиновым колпачком. В цилиндре имеется устройство для регулировки зазора между колодками и барабаном, представляющее собой пружинное упорное кольцо, вставленное с натягом в корпус цилиндра.
Во время торможения внутри цилиндра создается давление жидкости, под действием которого поршень перемещается и отжимает тормозную колодку. По мере изнашивания фрикционной накладки ход поршня при торможении становится больше и наступает момент, когда он своим буртиком передвигает упорное кольцо, преодолевая усилие его посадки. При обратном перемещении колодки под действием стяжной пружины упорное кольцо остается в новом положении, так как усилия стяжной пружины недостаточно, чтобы сдвинуть его назад. Таким образом, достигается компенсация износа накладок и автоматически устанавливается минимальный зазор между колодками и барабаном. Колесный цилиндр тормозного механизма переднего колеса действует только на одну колодку, поэтому отличается от колесного цилиндра заднего колеса внешними размерами и количеством поршней: в цилиндре заднего Различают температуру кипения «сухой» жидкости (не содержащей воды) и увлажненной (с содержанием воды 3,5%). Вязкость определяют при двух значениях температуры: +100°C и –40°C.
Стандарт Точка кипения (свежая /сухая) Точка кипения (старая / мокрая) Вязкость при 400оС Цвет Основа DOT 3 205 оС 140 оС 1500 бесцветная или янтарная Полиалкилен гли оль DOT 4 230 оС 155 оС 1800 бесцветная или янтарная борная кислота / гликоль DOT 4+ 260 оС 180 оС E 8 3 A1200 1500 бесцветная или янтарная борная кислота / гликоль DOT 5.1 260 оС 180 оС 900 бесцветная или янтарная борная кислота / гликоль DOT 3 – для относительно тихоходных автомобилей с барабанными тормозами или дисковыми передними тормозами; DOT 4 – на современных быстроходных автомобилях с преимущественно диcковыми тормозами на всех колесах; DOT 5.1 – на дорожных спортивных автомобилях, где тепловые нагрузки на тормоза значительно выше. Силиконовые изготавливаются на основе кремний-органических полимерных продуктов. Их вязкость мало зависит от температуры, они инертны к различным материалам, работоспособны в диапазоне температур от –100 до +350°С и не адсорбируют влагу. Но их применение ограничивают недостаточные смазывающие свойства.
Основанные на силиконе жидкости несовместимы с другими Силиконовые жидкости класса DOT 5 следует отличать от полигликолевых DOT 5.1, так как сходство наименований может привести к путанице. Для этого на упакове дополнительно обозначают: ДОТ 5 – SBBF («silicon based brake fluids» — тормозная жидкость, основанная на силиконе). DOT 5.1 – NSBBF («non silicon based brake fluids» — тормозная жидкость, не основанная на силиконе). Жидкости класса DOT 5 на обычных транспортных средствах практически не применяются. Кроме основных показателей – по температуре кипения и величине вязкости, тормозные жидкости должны отвечать другим требованиям. Воздействие на резиновые детали. Между цилиндрами и поршнями гидропривода тормозов установлены резиновые манжеты. Герметичность этих соединений повышается, если под воздействием тормозной жидкости резина увеличивается в объеме (для импортных материалов допускается расширение не более 10%). В процессе работы уплотнения не должны чрезмерно разбухать, давать усадку, терять эластичность и прочность. Воздействие на металлы. Узлы гидропривода тормозов изготавливаются из различных металлов, соединенных между собой, что создает условия для развития электрохимической коррозии. Для ее предотвращения в тормозные жидкости добавляют ингибиторы коррозии, защищающие детали из стали, чугуна, алюминия, латуни и меди. Смазывающие свойства. Смазывающие свойства тормозной жидкости определяют износ рабочих поверхностей тормозных цилиндров, поршней и манжетных уплотнений. Рис. 5 — Гидровакуумный усилитель автомобиля ГАЗ-24 «Волга» При этом атмосферный воздух начинает проходить через фильтр 5 в полость IV, уменьшая в ней разрежение. Поскольку в полости III разрежение продолжает сохраняться, разность давлений перемещает диафрагму 16 сжимая пружину 1 и через шток 10 действуя на поршень 11. При этом на поршень усилителя начинают действовать две силы: давление жидкости от главного тормозного цилиндра и давление со стороны диафрагмы, которые усиливают эффект торможения. При отпускании педали давление жидкости на клапан управления снижается, его диафрагма 4 прогибается вниз и открывает вакуумный клапан 3, сообщая полости 111 и IV. Давление в полости IV падает, и все подвижные детали камеры и цилиндра перемещаются влево в исходное положение, происходит растормаживание. Если гидроусилитель неисправен, привод будет действовать только от педали главного тормозного цилиндра с меньшей эффективностью. Пневматический привод тормозов Принцип действия пневматического привода тормозов. Тормозную систему с пневматическим приводом применяют на большегрузных грузовых автомобилях и больших автобусах. Тормозное усилие в пневматическом приводе создается воздухом, поэтому при торможении водитель прикладывает к тормозной педали небольшое усилие, управляющее только подачей воздуха к тормозным механизмам. По сравнению с гидравлическим приводом пневмопривод имеет менее жесткие требования к герметичности всей системы, так как небольшая утечка воздуха при работе двигателя восполняется компрессором. Однако сложность конструкции приборов пневмопривода, их габаритные размеры и масса значительно выше, чем у гидропривода. Особенно усложняются системы пневмопривода на автомобилях, имеющих двухконтурную или многоконтурную схемы. Такие пневмоприводы применяют, например, на автомобилях МАЗ, ЛАЗ, КамАЗ и ЗИЛ-130 (с 1984 г.). Сущность двухконтурной схемы пневмопривода автомобилей МАЗ состоит в том, что все приборы пневмопривода соединены в две независимые ветви для передних и задних колес. На автобусах ЛАЗ также применены два контура привода, действующие от одной педали через два тормозных крана на колесные механизмы передних и задних колес раздельно. Этим повышается надежность пневмопривода и безопасность движения в случае выхода из строя одного контура. Наиболее простую схему имеет пневмопривод тормозов на автомобиле ЗИЛ-130 (рис.6) выпуска до 1984 г.. В систему привода входят компрессор 1, манометр 2, баллоны 3 для сжатого воздуха, задние тормозные камеры 4, соединительная головка 5 для соединения с тормозной системой прицепа, разобщительный кран 6, тормозной кран 8, соединительные трубопроводы 7 и передние тормозные камеры 9. При работе двигателя воздух, поступающий в компрессор через воздушный фильтр, сжимается и направляется в баллоны, где находится под давлением. Давление воздуха устанавливается регулятором давления, который находится в компрессоре и обеспечивает его работу вхолостую при достижении заданного уровня давления. Если водитель производит торможение, нажимая на тормозную педаль, то этим он воздействует на тормозной кран, открывающий поступление воздуха из баллонов в тормозные камеры колесных тормозов. Для наблюдения за работой пневматического тормозного привода и своевременной сигнализации о его состоянии и возникающих неисправностях в кабине на щитке приборов имеются пять сигнальных лампочек, двухстрелочный манометр, показывающий давление сжатого воздуха в ресиверах двух контуров (I и II) пневматического привода рабочей тормозной системы, и зуммер, сигнализирующий об аварийном падении давления сжатого воздуха в ресиверах любого контура тормозного привода. Рис. 6 — Схема пневмопривода тормозов автомобиля ЗИЛ-130 Тормозные камеры поворачивают разжимные кулаки колодок, которые разводятся и нажимают на тормозные барабаны колес, производя торможение. При отпускании педали тормозной кран открывает выход сжатого воздуха из тормозных камер в атмосферу, в результате чего стяжные пружины отжимают колодки от барабанов, разжимный кулак поворачивается в обратную сторону и происходит растормаживание. Манометр, установленный в кабине, позволяет водителю следить за давлением воздуха в системе пневматического привода. Пневматический привод стояночной тормозной системы запитан от ресивера. При повороте рукоятки крана в положение «расторможено» воздух из ресивера и кран управления поступает в штоковую полость цилиндра. Поршень цилиндра перемещается, сжимая пружины, поворачивает регулировочный рычаг вместе с разжимным кулаком и разблокирует тормозной механизм. Давление воздуха в полости цилиндра, а следовательно, и перемещение поршня зависит от угла поворота рукоятки крана управления, что позволяет регулировать эффективность стояночной тормозной системы при использовании ее в качестве аварийной при торможении движущегося самосвала. Тормозной механизм стояночной тормозной системы (рис. 8) колодочного типа с двумя внутренними колодками, установлен на валу главной передачи заднего моста и блокирует только ведущие колеса. Рис. 8 Тормозной механизм стояночной тормозной системы: 1 — главная передача; 2 — тормозная колодка; 3 — щиток; 4 — ведущий вал главной передачи; 5 — палец крепления пружины; 6 — цилиндр тормозного механизма; 7 — кронштейн; 8 — разжимной кулак; 9 — верхняя стяжная пружина; 10 — суппорт; 11 — ось колодок; 12 — нижняя стяжная пружина; 13 — барабан тормозного механизма; 14, 20 — упорные кольца; 15, 21, 25 — шайбы; 16 — болт; 17 — фланец; 18 — пружинные шайбы; 19 — болт крепления барабана и карданного вала; 22 — уплотнительное кольцо; 23 — масленка; 24 — регулировочный рычаг; Две тормозные колодки 2 с приклепанными тормозными накладками опираются на общую ось 11. Стяжной пружиной 9 колодки прижаты к разжимному кулаку 8, а пружиной 12 — к оси 11. На валу разжимного кулака на шлицах закреплен регулировочный рычаг 24, который соединен со штоком цилиндра тормозного механизма. При затормаживании самосвала сжатый воздух из цилиндра тормозного механизма через кран управления выходит в атмосферу, и усилием пружин тормозного цилиндра регулировочный рычаг поворачивается вместе с разжимным кулаком, который прижимает колодки к барабану, закрепленному на ведущей шестерне главной передачи заднего моста. Тормозной механизм блокирует вращающиеся элементы трансмиссии с картером передачи. Перечень возможных неисправностей тормозной системы Признаки неисправности Причина неисправности Способ устранения неисправности Педаль тормоза проваливается и пружинит Воздух в тормозной системе Удалить воздух из тормозной системы автомобиля В расширительном бачке мало тормозной жидкости Долить тормозную жидкость в расширительный бачок. Удалить воздух из тормозной системы Образование пузырьков пара. Проявляется при большой нагрузке на тормоза Заменить тормозную жидкость. Удалить воздух из тормозной системы автомобиля. Повышенный свободный ход педали тормоза Частичный или полный износ тормозных колодок, тяжелый ход установочного механизма Обеспечить легкость хода установочного механизма или заменить тормозные колодки автомобиля Повреждение манжеты в главном тормозном или в одном из колесных цилиндров Заменить поврежденные детали Отказ одного тормозного контура Проверить утечки тормозной жидкости в тормозных контурах Повышенные люфты подшипников колес Заменить подшипники колес Боковое биение или выход из допуска по толщине тормозного диска Проверить биение и толщину. Диск проточить или заменить Тормозной суппорт не параллелен тормозному диску Проверить поверхности тормозного суппорта Попадание воздуха в тормозную систему Удалить воздух из тормозной системы Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом- изготовителем Негерметична тормозная система Проверить герметичность тормозной системы Не функционирует устройство установки тормозных колодок (для барабанных тормозов) Обеспечить легкость хода установочного механизма Снижение эффекта торможения, жесткая педаль тормоза Утечки в трубопроводе Подтянуть крепления или заменить трубки Повреждение манжет в колесных или в главном тормозном цилиндрах Заменить манжеты, внутренние детали главного тормозного цилиндра или сам цилиндр. При торможении автомобиль уводит в одну сторону Неправильное давление в шинах Проверить давление в шинах и откорректировать Односторонний износ шин Заменить изношенные шины Замаслены накладки тормозных колодок Заменить накладки тормозных колодок Различный материал накладок тормозных колодок на одной оси Заменить тормозные колодки. Установить; тормозные колодки, пригодные для данной модели автомобиля Повреждение поверхностей накладок тормозных колодок Заменить накладки Загрязнение шахт тормозных суппортов Очистить посадочные и направляющие шахты колодок в тормозном суппорте Коррозия цилиндра суппорта Заменить суппорт Неравномерный износ тормозных колодок Заменить тормозные колодки (на обоих колесах) Загрязнение или повреждение направляющих пальцев суппортов Заменить направляющие пальцы Нарушена геометрия заднего моста Произвести обмер ходовой части Дефект амортизаторов Проверить и, если требуется, заменить амортизаторы Колодки суппорта изношены или затвердели Заменить тормозные колодки суппорта Приржавели поршни в колесных тормозных цилиндрах (для Заменить колесные тормозные цилиндры изготовителем |Дефект усилителя тормозов [Проверить усилитель |Износ накладок тормозных колодок. Заменить тормозные колодки Отказ одного из тормозных Проверить терметичность контуров гормозной системы Пульсация тормозов Функционирование АБС Нормально, ничего не предпринимать [Повышенное биение или|Проверить биение и толщину. Диск] отклонение от нормальной |обточить или заменить. толщины тормозного диска Тормозной диск не параллелен тормозному суппорту [Проверить плоскость установки! тормозного суппорта [Велик люфт колесных [Заменить колесные подшипники [подшипников Недостаточная эффективность| Увеличен свободный ход|Отрегулировать стояночный тормоз стояночного тормоза тормозных колодок или тросов автомобиля Замаслены тормозные колодки Заменить тормозные колодки [Коррозия распорного замка или тросов, ` Установить новые детали |Нарушение регулировки стояночного тормоза тросов, Отрегулировать тросы стояночного тормоза автомобиля Список источников 1) tezcar.ru 2) trackbus.ru 3) bibliotekar.ru

Всё, что нужно знать о тормозах. Часть 1: устройство, эксплуатация и диагностика неисправностей

Как устроена тормозная система автомобиля

Основная функция любой тормозной системы проста — замедлять движущийся авто­мобиль вплоть до полной остановки и, при необходи­мости, удерживать его на месте, например при парковке. Физический принцип работы тормозов тоже един: они преобразуют энергию движения в тепло. Но способы этого преобразо­вания могут отличаться, а могут и комбиниро­ваться. В частности, на тяжёлые грузовики помимо основных тормозных механизмов ставят также моторный тормоз и (или) трансмис­сионный (ретардер).

Но в легковых автомобилях, тормозам которых и посвящена эта статья, большую часть работы по замедлению выполняют тормозные механизмы, установ­ленные на ступицы колёс. В каждом из них к вращающе­муся металли­ческому диску или барабану при торможении прижимаются неподвижные тормозные колодки — и за счёт их трения друг об друга колесо замедляется, а машина останав­ливается.

Команду прижать колодки к диску даёт водитель, нажимая на педаль тормоза, — и чем сильнее он это делает, тем активнее замедляется автомобиль. Усилие с педали на колодки передаёт гидравли­ческий привод — это герметичная система трубок, шлангов и поршней, заполненная специальной тормозной жидкостью. О её свойствах мы уже рассказывали. А поскольку силы ног не хватит, чтобы эффективно замедлять машину массой более тонны, водителю помогает усилитель тормозов. Он, как правило, работает от двигателя автомобиля.

Но главный секрет эффективного торможения заключается в устройстве тормозной колодки. Она состоит из металличе­ского каркаса, на который давит поршень гидравли­ческой системы, и слоя фрикци­онного материала (накладки), имеющего очень высокий коэффи­циент трения. Накладка надёжно приклеивается к каркасу, но постепенно стирается и становится тоньше – при критичном её износе колодку необходимо менять на новую. Состав накладки очень сложный: в нём может быть до 20 компонентов, которые не только обеспе­чивают высокий коэффи­циент трения, но также увеличивают износо­стойкость накладки (и диска, к которому она прижимается), а также стойкость к нагреву.

И, конечно, при торможении выделяется много тепла. Тандем «диск–колодки» рассчитан на работу в условиях значительной температуры, однако отводить это тепло очень сложно. Именно перегрев тормозов зачастую оказывается причиной многих неисправ­ностей, повышенного износа тормозной системы и в некоторых случаях аварийных ситуаций.

Классификация и устройство тормозных систем. Тормозная система автомобиля. Устройство и работа

Похожие главы из других работ:

Метрологические испытания тормозной системы автомобиля

Глава 2. МЕТРОЛОГИЧЕСКИЕ ИСПЫТАНИЯ ТОРМОЗНЫХ СИСТЕМ АВТОМОБИЛЕЙ

Контроль тормозных систем производится в соответствии с ГОСТом на специально оборудованных площадках или тормозных стендах. Стенды позволяют оценить тормозное усилие на каждом из колес отдельно…

Оптимизация температурного режима двигателя в зимнее время

1.1 Классификация систем охлаждения двигателей

При сгорании топлива внутри цилиндра температура газов поднимается до 2000 °С. Тепло расходуется на механическую работу, частично уносится с выхлопными газами, тратится на лучеиспускание и нагрев деталей двигателя. Если его не охлаждать…

Основы технической диагностики автомобилей

Диагностирование тормозных систем

Можно проверить двумя методами: ходовыми испытаниями и стационарными на специальных стендах. При ходовых испытаниях тормозов их эффективность проверяют по длине пути торможения и по максимальному (или среднему) замедлению…

Подбор диагностического оборудования при реконструкции муниципального унитарного предприятия «Волгоградское пассажирское автотранспортное предприятие №7»

3.1 Оборудование для диагностирования тормозных систем

Согласно ГОСТ 25478 — 82, проверка эффективности тормозов осуществляется методами ходовых и стендовых испытаний. Методика ходовых испытаний заключается в том…

Противообледенительная система авиационных силовых установок

1.3 Классификация противообледенительных систем

Для защиты силовых установок от обледенения наибольшее распространение получили тепловые системы. В зависимости от источников энергии они подразделяются на воздушно-тепловые и электротепловые. В первых используют тепловую энергию воздуха…

Разработка рекомендаций по выбору оборудования для диагностирования тормозной системы автомобилей

1.2 Виды тормозных систем автомобиля

автомобиль тормоз вакуумный Тормозная система необходима для замедления транспортного средства и полной остановки автомобиля, а также его удержания на месте. Для этого на автомобиле используют некоторые тормозные система, как — стояночная…

Разработка рекомендаций по выбору оборудования для диагностирования тормозной системы автомобилей

2. Методы и оборудование для диагностики тормозных систем

Разработка рекомендаций по выбору оборудования для диагностирования тормозной системы автомобилей

2.3 Методы диагностирования тормозных систем

Для диагностирования тормозных систем автомобилей, применяют два основных метода диагностирования — дорожный и стендовый [7]. ..

Современные методы диагностирования электрических цепей электропоездов

1.2 Классификация систем диагностирования электрических цепей и электропоездов

Основная задача технического диагностирования состоит в организации эффективных процессов определения технического состояния различных, особенно сложных, многокомпонентных объектов…

Тормозная система автомобиля

1.1 Классификация тормозных систем

1.Рабочая тормозная система — предназначена для регулирования скорости движения транспортного средства и его остановки. Рабочая тормозная система приводится в действие нажатием на педаль тормоза…

Тормозная система автомобиля. Устройство и работа

Устройство и работа стояночной, вспомогательной и запасной тормозных систем

Вспомогательная тормозная система Вспомогательная тормозная система используется в виде тормоза-замедлителя на автомобилях большой грузоподъемности (МАЗ, КрАЗ…

Улучшение тормозных качеств автомобиля в эксплуатации

1.
1 Конструкции тормозных систем

Конструкции автомобилей оборудуются основной (рабочей), запасной и стояночной тормозными системами. Основная тормозная система предназначена для замедления движения автомобиля с желаемой интенсивностью вплоть для его остановки…

Управление маршрутной системой и работой предприятий городского пассажирского транспорта города Тамбова

3.1 Классификация систем местоопределения подвижных объектов

Задачи определения местонахождения автомашин, других транспортных средств, ценных грузов и т.п. крайне актуальны как для государственных правоохранительных органов, так и для частных структур безопасности…

Устройство судна

8.1 Классификация судовых систем

Судовые системы служат для транспортировки на судне различных веществ. По виду перекачиваемого вещества системы бывают: водяные, воздушные, топливные, масляные, рассольные и т.д…

Устройство тормозной системы ВАЗ-2110

1.
1 Основные типы тормозных систем автомобилей

Гидравлические Пневматические Гидропневматические В эти типы тормозных систем входят: Рабочая Рабочая тормозная система служит для снижения скорости автомобиля с желаемой интенсивностью вплоть до полной остановки не зависимо от скорости…

Тормозная система: описание,виды,устройство,фото,видео,принцип работы

Для эффективного управления движением любого механического средства – регулированием скорости на том или ином участке пути, замедлением её при выполнении маневров, наконец, для остановки в нужном месте – и в том числе экстренной – на всех грузовых и легковых автомобилях должна быть установлена соответствующая классу машины тормозная система. Для удержания машины на месте во время продолжительной стоянки, особенно на склоне, предусмотрен стояночный тормоз.

Для безопасной эксплуатации транспортного средства эта система должна быть надежна, как никакая другая. Не случайно в перечне неисправностей, при которых запрещено использование транспортного средства (приложение к Правилам дорожного движения РФ), неисправности тормозных систем вынесены на первое место.

ВИДЫ И УСТРОЙСТВО ТОРМОЗНЫХ СИСТЕМ

В современных автомобилях используют устройства тормозов двух видов – дисковые и барабанные. Название устройств видов тормозных систем пошло от используемого главного элемента, воспринимающего тормозное усилие, выполненного в виде диска или в виде барабана.

Барабанные тормоза насчитывают более ста лет, в настоящее время считаются устаревшими, обычно применяются в устройстве заднего моста автомобиля. Устройство задних барабанных тормозов достаточно простое и надежное. Ступица колеса жестко соединена с тормозным барабаном, который и воспринимает тормозящее усилие от двух тормозных колодок со специальными накладками. Пара колодок и гидравлический привод, называемый еще колесным цилиндром, смонтированы на тормозном щите, являющимся силовой деталью заднего моста. Устройство барабана таково, что удачно закрывает весь механизм от грязи и пыли, поэтому задний механизм торможения менее восприимчив к воздействию окружающей среды.

При нажатии педали тормоза давление гидравлической жидкости передается в рабочую полость колесного цилиндра и выталкивает из него два симметричных штока, прижимающих колодки к внутренней поверхности тормозного барабана. В старых моделях барабан изготавливался из специальных сортов чугуна, современные барабаны отливаются из алюминиевых сплавов с чугунными вставками, что значительно улучшает отведение тепла от трущихся поверхностей.

В конструкции барабанного механизма предусмотрено крепление троса стояночного тормоза. При выжимании рычага на определенную величину, легко контролируемую по количеству щелчков храповика фиксатора, трос натягивается и через специальный рычаг механизма тормоза с усилием прижимает колодки заднего тормоза к барабану, тем самым фиксируя колеса машины.

Преимущества устройства барабанных систем:

  • общая рабочая поверхность колодок составляет не менее 400 см 2 для легкового автомобиля класса «В», что в разы больше суммарной поверхности накладок дисковых систем;
  • при меньшей эффективности, значительно большее останавливающее действие;
  • устройство привода позволяет легко подключить трос ручного стояночного тормоза, тогда как для дисковых систем это сделать значительно сложнее;
  • накладки на колодках изнашиваются медленнее.

Важно! Контролировать, насколько выработана и изношена рабочая поверхность барабана, в силу специфики устройства достаточно сложно, поэтому следует с каждой регулировкой системы демонтировать барабан и замерять остаточную толщину стенки.

Усилие торможения может достаточно изменить траекторию движения автомобиля, поэтому в системе управления торможением первым всегда подключается привод задних колес, с небольшим опозданием подключается привод колодок передних колес. Благодаря такой последовательности обеспечивается стабильность курса движения машины без бокового заноса или разворота.

Принцип работы тормозной системы

Принцип работы тормозной системы рассмотрен на примере гидравлической рабочей системы.

При нажатии на педаль тормоза нагрузка передается к усилителю, который создает дополнительное усилие на главном тормозном цилиндре. Поршень главного тормозного цилиндра нагнетает жидкость через трубопроводы к колесным цилиндрам. При этом увеличивается давление жидкости в тормозном приводе. Поршни колесных цилиндров перемещают тормозные колодки к дискам (барабанам).

При дальнейшем нажатии на педаль увеличивается давление жидкости и происходит срабатывание тормозных механизмов, которое приводит к замедлению вращения колес и поялению тормозных сил в точке контакта шин с дорогой. Чем больше приложена сила к тормозной педали, тем быстрее и эффективнее осуществляется торможение колес. Давление жидкости при торможении может достигать 10-15 МПа.

При окончании торможения (отпускании тормозной педали), педаль под воздействием возвратной пружины перемещается в исходное положение. В исходное положение перемещается поршень главного тормозного цилиндра. Пружинные элементы отводят колодки от дисков (барабанов). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр. Давление в системе падает.

Эффективность тормозной системы значительно повышается за счет применения систем активной безопасности автомобиля.

ТОРМОЗНЫЕ МЕХАНИЗМЫ

Механизмы тормозов используются для создания противодействующего вращению колёс механического момента. В основном на всех авто применяются фрикционные механизмы, работающие на трении соприкасающихся материалов. Они устанавливаются на колесе и делятся по конструкции на дисковые и барабанные типы.

1 — колесная шпилька дисковые тормоза
2 — направляющий палец
3 — смотровое отверстие
4 — суппорт
5 — клапан
6 — рабочий цилиндр
7 — тормозной шланг
8 — тормозная колодка
9 — вентиляционное отверстие
10 — тормозной диск
11 — ступица колеса
12- грязезащитный колпачок

Дисковые механизмы могут быть с подвижным или статичным суппортом. Подвижный суппорт способствует равномерному износу трущихся накладок и, кроме того, обеспечивает постоянный зазор до поверхности диска вне зависимости от выработки накладок. Он крепится на подвеске с помощью кронштейна и имеет пазы для установки рабочих цилиндров. Диск, соединённый со ступицей колеса, имеет гладкую поверхность и отверстия для быстрого воздушного охлаждения.

Колодки с тормозящими накладками в нормальном положении прижаты к суппорту возвратными пружинами. Под давлением штока поршня исполнительных цилиндров колодки отжимаются к поверхности диска, происходит его торможение. Для индикации выработки накладок в колодках имеется датчик износа, который сигнализирует на приборную доску о критической выработке фрикционного поверхностного слоя колодок.

Барабанные механизмы имеют полукруглые колодки в виде полумесяца с фрикционными накладками с наружной стороны, нижние концы которых закреплены на неподвижной оси, а верхние концы могут раздвигаться под давлением поршней исполнительных цилиндров тормозов. Прижатые в нормальном положении друг к другу стяжными пружинами полукруглые колодки под давлением поршней раздвигаются и распирают внутреннюю поверхность вращающегося барабана. Трение поверхностей колодок и барабана приводит к торможению колеса. Для компенсации выработки трущейся поверхности имеется механизм самоподвода колодок к барабану.

По отношению к тормозам барабанного типа дисковые механизмы имеют следующие преимущества:

  • температурные изменения материала не влияют на состояние поверхности, и тормозной момент не зависит от нагрева диска;
  • эффективное воздушное охлаждение за счёт использования отверстий на диске и высокая температурная стойкость материала;
  • меньший тормозной путь за счёт активного действия всей поверхности колодок;
  • меньше вес и габариты;
  • высокая чувствительность системы торможения;
  • оперативность срабатывания;
  • лёгкость замены колодок, не требуется обточка и подгонка накладок при замене колодок;
  • до 70% инерции движения автомобиля могут гаситься на передних тормозных дисках.

О тормозных приводах

В автомобильных тормозных системах нашли применение вот эти типы тормозных приводов:

  • гидравлический;
  • пневматический;
  • комбинированный.
  • механический;

Гидравлический привод получил самое широкое распространение в рабочей тормозной системе автомобиля. В него входят:

  • главный тормозной цилиндр;
  • тормозная педаль;
  • колесные цилиндры;
  • усилитель тормозов
  • шланги и трубопроводы (рабочие контура).

При усилии на тормозную педаль водителем, та передает усилие от ноги на главный тормозной цилиндр. Усилитель тормозов дополнительно создает усилие, облегчая тем самым жизнь водителя. Широкое применение на машинах приобрел вакуумный усилитель тормозов.

Главный тормозной цилиндр нагнетает тормозную жидкость к тормозным цилиндрам. Обычно над главным цилиндром стоит расширительный бачок, в нем содержится тормозная жидкость.

Колесный цилиндр прижимает тормозные колодки к тормозному барабану или диску.

Рабочий контур сейчас представляет из себя основной и вспомогательный. Например, вся система исправна, то значит работают оба, но при неисправности одного из них — другой будет работать.

Широко распространены три основные компоновки разделения рабочих контуров:

  • 2 + 2 подключенных параллельно — задние + передние;
  • 2 + 2 подключенных диагонально — правый передний + левый задний и так далее;
  • 4 + 2 в один контур подключены два передних, а в другой тормозные механизмы всех колес.

Прогресс не стоит на месте и сейчас в состав гидравлического тормозного привода добавляются разные электронные компоненты:

  • усилитель экстренного торможения
  • антиблокировочная система тормозов;
  • антипробуксовочная система;
  • система распределения тормозных усилий;
  • электронная блокировка дифференциала.

Пневматический привод применяется в тормозной системе большегрузных автомобилей.

Комбинированный тормозной привод — это комбинация разных типов привода.

Механический привод применяется в стояночной тормозной системе. Он включает в себя систему тяг и тросов, с помощью которых объединяет систему в одно целое, обычно на задние колеса имеет привод. Рычаг тормоза соединен при помощи тонкого троса с тормозными механизмами, где есть устройство, которое приводит в действие основные или стояночные колодки.

Есть автомобили, где стояночная система работает от ножной педали. Сейчас всё чаще стали применять в стояночной системе электропривод, который получил название — электромеханический стояночный тормоз.

Итак, как работает гидравлическая тормозная система

Осталось рассмотреть работу тормозной системы, что мы сделаем на примере гидравлической системы.

Когда водитель нажимает на педаль тормоза, то передается нагрузка к усилителю и тот создает усилие на главном тормозном цилиндре. А в свою очередь поршень главного тормозного цилиндра через трубопроводы нагнетает жидкость к колесным цилиндрам. Поршни колесных цилиндров от давления жидкости передвигают тормозные колодки к дискам или барабанам и происходит торможение автомобиля.

Когда водитель убирает ногу с педали тормоза, то педаль от действия возвратной пружины возвращается в начальное положение. Также, в свое положение возвращается и поршень главного тормозного цилиндра, а пружины отводят колодки от барабанов или дисков. Тормозная жидкость возвращается обратно в главный тормозной цилиндр и падает давление в системе.

УХОД ЗА ТОРМОЗНОЙ СИСТЕМОЙ АВТОМОБИЛЯ

Как один из наиболее важных узлов, тормозная система автомобиля требует постоянного внимания и ухода. Здесь буквально любая неисправность может привести к непредсказуемым последствиям на дороге.

Некоторые диагнозы можно поставить, исходя из характера поведения тормозной педали. Так увеличенный ход или «мягкая» педаль свидетельствуют, скорее всего, о попадании воздуха в систему гидропривода в результате утечки тормозной жидкости. Поэтому необходимо периодически контролировать уровень жидкости в бачке.

Её повышенный расход может быть следствием повреждения гидрошлангов и трубок, а также обыкновенного испарения со временем. Это приводит к попаданию в систему воздуха и отказу тормозов.

Пришедшие в негодность детали необходимо заменить, а систему придется прокачивать, выпуская воздух из каждого рабочего цилиндра на колесах и доливая жидкость. Процесс длительный и нудный.

Уход автомобиля при торможении в сторону говорит о возможном выходе из строя одного из рабочих цилиндров или чрезмерном износе накладок на каком-то определенном колесе. При загрязнении тормозных механизмов может возникать характерный шум при нажатии на педаль.

Все эти неисправности легко устраняются самостоятельно или обращением в сервисный центр. А чтобы свести к минимуму вышеописанные неприятности, берегите тормоза, чаще используйте торможение двигателем, особенно на крутых и затяжных спусках. Продолжительное по времени включение основной рабочей системы ведет к перегреву деталей и служит причиной различных поломок

Тормоза предназначены для уменьшения скорости движения и быстрой остановки автомобиля, а также для удержания его на месте.

В каждом автомобиле имеются два действующих независимо друг от друга тормоза — ножной и ручной. Ножной тормоз предназначен для торможения автомобиля в движении и потому является основным рабочим тормозом. Ручной тормоз служит главным образом для затормаживания автомобиля на стоянке, для удержания его на подъемах и спусках, а также для торможения автомобиля в случае неисправности ножного тормоза.

Ножные тормоза на всех автомобилях устанавливаются в колесах и устроены примерно одинаково. Колесный тормоз состоит из двух колодок 3, установленных шарнирно на пальцах 6, закрепленных на неподвижном тормозном диске 8. Колодки расположены внутри тормозного барабана 7, соединенного со ступицей колеса. Тормозной диск жестко соединен с поворотным кулаком переднего моста, а у задних мостов — с фланцами их кожухов. Между свободными концами колодок помещен разжимной кулак 9. Когда тормозная педаль не нажата, колодки, стянутые между собой пружиной 4, не касаются тормозного барабана и колесо свободно вращается.

Рис. Колесный тормоз: 1 — фрикционная накладка; 2 — заклепка; 3 — колодка; 4 — стяжная пружина; 5 — кронштейн пальцев колодок; 6 — пальцы; 7 — тормозной барабан; 8 — тормозной диск; 9 — разжимной кулак

При нажатии на тормозную педаль разжимной кулак поворачивается, преодолевая усилие пружины 4, раздвигает колодки и прижимает их к тормозному барабану с большой силой. В результате трения, возникающего между фрикционными накладками 1 колодок и барабаном, вращение колеса прекращается и автомобиль останавливается.

Привод колесных тормозов бывает:

Гидравлический привод тормозов обеспечивает большую плавность торможения автомобиля и одновременность работы тормозов всех колес. Тормоза с гидравлическим приводом применяются преимущественно на легковых и грузовых автомобилях небольшой грузоподъемности. Это объясняется тем, что с увеличением грузоподъемности автомобиля возрастает и усилие, которое водитель должен прикладывать к тормозной педали, чтобы затормозить автомобиль; управление такими тормозами значительно затрудняется.

Интенсивность торможения автомобиля, оборудованного тормозами с пневматическим приводом, зависит не от силы нажатия на тормозную педаль, а от величины ее перемещения. Тормоза с пневматическим приводом легки в управлении и устанавливаются на автомобилях большой грузоподъемности.

Широкое распространение пневматического привода тормозов на большегрузных автомобилях и тягачах объясняется еще и тем, что обеспечивается управление тормозами прицепа. Тормозная система прицепа присоединяется при помощи шланга к тормозной системе автомобиля-тягача и работает с нею как одно целое.

Пневмогидравлический привод тормозов сочетает в себе преимущества гидравлического и пневматического приводов: большую плавность торможения, легкость управления тормозом и возможность управления тормозами буксируемого прицепа.

Если говорить о безопасности в автомобиле, сложно представить что-то более важное, чем хорошие тормоза. Всё остальное тоже важно, никто не спорит:на плохом двигателе далеко не уедешь, на плохих амортизаторах особо не расслабишься, но нормальная, исправная тормозная система автомобиля – это то, с чего вообще нужно начинать разговор о вождении.

Учитывая, что от тормозов буквально зависит человеческая жизнь, инженеры постарались сделать эту систему как можно более надежной. Что же там, под средней педалью?

Тормозная система автомобиля

Классификация тормозных систем автомобиля по назначению, устройство

Когда-то можно было обойтись одним видом тормозов. Но автоконструкторы постоянно искали возможности улучшить их конструкцию, и на сегодняшний день мы имеем различные виды тормозных систем, отличающиеся по назначению, принципу работы и техническому исполнению.

Рабочая (основная)

Да, учитывая, что именно ей мы обязаны жизнью и безопасностью, рабочая тормозная система по праву стоит на первом месте. Это те тормоза, которыми водитель управляет во время движения: они позволяют замедлить или остановить транспортное средство. Рабочая тормозная система соединена с системой ABS (антиблокировочной), которая помогает маневрировать в критической дорожной ситуации.

Стояночная

Назначение стояночного тормоза понятно из названия: фиксировать автомобиль на долгое время, чтобы он не покатился с горочки в отсутствие хозяина. В отличие от основной системы, стояночная предназначена для длительного включения без последствий для работоспособности.
Стояночный тормоз может выручить и в том случае, когда основные тормоза по какой-то причине не работают (такое бывает редко, но бывает). Как минимум, она поможет остановиться не в ближайшем столбе.

Запасная

Резервная, она же запасная, она же аварийная – специальная тормозная система, которая предназначена для страховки в случае отказа основных тормозов. Она может устанавливаться отдельно, может быть конструктивным элементом основных тормозов, а может и вообще отсутствовать в автомобиле. Если запасного тормоза нет, в случае чего придется спасаться стояночным, он поможет.

Вспомогательная

Ее называют еще горной, по основному назначению. Ставится вспомогательный тормоз в грузовые автомобили, и применяется в условиях, когда нужно постоянно оттормаживаться в течение долгого времени. Типичный пример – езда по горным дорогам с грузом. Обычные тормоза в таких условиях перегреваются, поэтому водители пользуются вспомогательными.

Классификация тормозных систем автомобиля по типу привода, устройство

Один человек, даже очень сильный, не может приложить достаточное усилие на тормоза, чтобы остановить машину. Для умножения и передачи усилия используется привод тормозной системы. Типы приводов бывают разные:

Механический

Типичный пример – стояночный тормоз, у которого в качестве привода трос и рычаги. Этой системе столько лет, сколько самому автомобилю, но ничего более простого и безотказного пока что инженеры не придумали.

Гидравлический

Тормоза с гидравликой есть у любого легкового автомобиля, это самая привычная нам система. Можно сказать, гидравлика сочетает в себе эффективность и доступность: работает отлично, обслуживать достаточно легко, комплектующие есть в любом магазине автотоваров. Гидравлические тормоза делятся по типу тормозных элементов на дисковые и барабанные.

    Дисковый тормоз.
    Эффективно? Да. Надежно? Да. Дисковые тормоза в свое время стали фурором в автоспорте, а затем и в повседневной жизни. По эффективности она сразу же превзошли привычные тогда тормозные барабаны. Устройство дисковых тормозов

Принцип работы дискового тормоза знает любой водитель: фрикционные накладки расположены по обе стороны стального диска, который надет на ступицу колеса и вращается вместе с ней. Нажатие на педаль тормоза приводит в действие привод, накладки зажимают диск и останавливают его, а вместе с ним и автомобиль.
Барабанный тормоз.
В отличие от дискового тормоза, в барабанном фрикционные накладки располагаются внутри тормозного барабана. При нажатии педали привод раздвигает колодки, и они прижимаются к внутренним стенкам.

Устройство барабанных тормозов

По эффективности барабанные тормоза стоят далеко позади дисковых, и в прямом, и в переносном смысле. Поскольку для остановки автомобиля торможение передних колес важнее, чем задних, то барабанные тормоза иногда ставят на задние колеса в недорогих моделях автомобилей.

Пневматический

Пневматика в качестве привода тормозной системы не используется в легковых автомобилях, ее ставят на тяжелую коммерческую технику. Принцип действия немного похож на гидравлический, но рабочей средой является не жидкость, а сжатый воздух, который накачивается в систему компрессором. Когда водитель нажимает педаль тормоза, воздух под давлением проходит к тормозным элементам и приводит их в действие.

Комбинированный

Комбинированную тормозную систему можно встретить на тяжелой спецтехнике. Он состоит из различных типов привода, что дает громоздкий, но надежный результат. Электромеханический или гидромеханический привод нужны для тяжелого транспорта в тяжелых условиях.

Контуры подключения

Отказ тормозов всегда был самым большим кошмаром любого водителя. Поэтому инженеры давно придумали, как сделать, чтобы можно было остановить машину даже с поврежденной тормозной системой (а повредить гидравлическую систему проще, чем любую другую. Потек уплотнитель – и привет горячий).

Одним из вариантов страховки на случай отказа стало разнесение системы на два контура. Оказалось, двухконтурные тормоза это не так сложно, как могло быть, зато надежно и безопасно. Даже если один из контуров откажет, система продолжит работать, позволив избежать аварии.

Есть 5 вариантов компоновки контуров гидравлической системы:

    4+2, параллельная со страховкой передней оси. Один контур запитывает все четыре колеса, второй – только два передних.

Контуры параллельные, схема 4+2
2+2, параллельная. Один контур на переднюю ось, второй на заднюю. Так чаще всего конструируют заднеприводные автомобили.

Контуры параллельные, схема 2+2
2+2, диагональная. Один контур идет на левое переднее и правое заднее колесо, второй на правое переднее и левое заднее. Эту систему обычно ставят на переднеприводные автомобили.

Контуры диагональные, схема 2+2
3+3, комбинированная. Один контур идет на передние колеса и правое заднее, а другой тоже идет на передние колеса и на левое заднее.

Контур комбинированный, схема 3+3
4+4, параллельная. Два контура подводятся на все 4 колеса параллельно.

Контур параллельный, схема 4+4

В большинстве случаев владелец автомобиля даже не задумывается, какая там у него схема разнесения контуров. Тормоза работают – и отлично.

Принцип работы тормозной системы

Самая распространенная гидравлическая тормозная система работает достаточно просто, ниже, на видео-уроке детально показан принцип работы в 3Д анимации.

  1. Первой в цепочке элементов стоит педаль тормоза. Когда водитель нажимает на нее, давление передается на вакуумный усилитель тормозов;
  2. Вакуумный усилитель увеличивает давление и передает его на главный тормозной цилиндр, вдавливая поршень;
  3. От ГТЦ по трубопроводам гидравлическая жидкость поступает к цилиндрам суппортов. За счет несжимаемости жидкости, она почти мгновенно передает усилие от главного цилиндра на тормозные механизмы, и они приходят в действие;
  4. Рабочие цилиндры суппортов прижимают тормозные колодки к дискам или барабанам;
    Чем сильней водитель давит на педаль, тем больше и резче будет усилие на тормозах. Это дает возможность управлять автомобилем, чувствуя и рассчитывая силу торможения;
  5. Когда водитель отпускает педаль, система возвращается в нейтральное положение. Педаль становится на место благодаря возвратной пружине, давление в гидросистеме падает.

Неисправности тормозной системы автомобиля

Есть несколько основных неполадок, которые могут произойти с тормозами:

  1. Износ тормозных колодок, дисков, их неисправность, деформация и т.д. Все мы знаем, что тормозные колодки и диски не вечные, но периодически забываем об их существовании. Зато они сами напоминают нам, когда начинают скрипеть, свистеть, скрежетать и издавать другие ненормальные звуки. Если диагностика показала, что колодки вышли из строя, нужно менять и их, и диски;
  2. Проблема с гидросистемой. Это может быть и утечка через поврежденные шланги, и воздушная пробка, и изношенные прокладки главного цилиндра. О таких неполадках говорит увеличенный ход педали тормоза. Ремонт заключается в поиске протечки, устранении неисправности, замене изношенных деталей, прокачке системы;
  3. Вышел из строя вакуумный усилитель. В этом случае при нажатии на педаль будет чувствоваться большее сопротивление, чем обычно. При осмотре нужно обратить внимание на состояние усилителя;
  4. Клин поршня ГТЦ. Когда такое случается, в гидросистеме создается постоянное давление, которое действует, в том числе, и на тормозные суппорта. То есть колёса будут тяжелыми, замедленными. Нужен демонтаж, проверка и ремонт главного тормозного цилиндра, после чего можно ездить дальше.

Заключение

Что сделать, чтобы никогда не знать, как ломается тормозная система автомобиля? Один из главных советов – своевременное и грамотное ее обслуживание. Тормозная жидкость нуждается в регулярной замене, тормозные колодки – тоже, диски и барабаны не вечные. Осмотр, профилактика и своевременная замена расходников помогут избежать огромного количества проблем и затрат.

Назначение тормозной системы

Переходим от изучения общего устройства тормозной системы автомобиля к современным тормозным системам

Т ормозная система предназначена для снижения скорости движения и полной остановки (экстренной) автомобиля, а также для удержания на месте неподвижно стоящего автомобиля.

П роцесс торможения движущегося автомобиля заключается в создании искусственного сопротивления этому движению. Обычно уменьшение скорости автомобиля вплоть до полной его остановки осуществляется путем создания тормозных сил в контакте колес с дорогой, направленных в сторону, противоположную движению. Тормозные силы необходимы и для удерживания автомобиля на месте.

Т ормозная сила создается путем торможения колеса специальным, обычно фрикционным, устройством — тормозным механизмом. Наиболее высокая эффективность торможения требуется в экстренных случаях. Именно на это должна быть рассчитана тормозная система, хотя они составляют не более 1—3% от общего числа использования тормозной системы.

Устройство тормозной системы делится на:

Р абочая тормозная система позволяет водителю снижать скорость движения автомобиля и останавливать его при обычном режиме эксплуатации.

Схема рабочей тормозной системы автомобиля :

1 — тормозной диск колеса;
2 — скоба тормозного механизма передних колес;
3 — передний тормозной контур;
4 — главный тормозной цилиндр;
5 — бачок с датчиком аварийного падения уровня тормозной жидкости;
6 — вакуумный усилитель;
7 — толкатель;
8 — педаль тормоза;
9 — выключатель света торможения;
10 — тормозные колодки задних колес;
11 — тормозной цилиндр задних колес;
12 — задний контур;
13 — кожух полуоси заднего моста;
14 — нагрузочная пружина;
15 — регулятор давления;
16 — задние тросы;
17 — уравнитель;
18 — передний (центральный) трос;
19 — рычаг стояночного тормоза;
20 — сигнализатор аварийного падения уровня тормозной жидкости;
21 — выключатель сигнализатора стояночного тормоза;
22 — тормозная колодка передних колес.

З апасная тормозная система позволяет водителю уменьшать скорость движения автомобиля и останавливать его при неисправности рабочей тормозной системы. С целью упрощения конструкции отдельная (автономная) запасная система практически не применяется. Обычно ее роль выполняют оставшиеся исправные части (контуры привода) рабочей тормозной системы или специальным образом спроектированная стояночная тормозная система. Часто на больших автомобилях для повышения надежности используют одновременно оба указанных технических решения.

С тояночная тормозная система позволяет удерживать автомобиль в неподвижном состоянии на наклонной поверхности и при отсутствии водителя.

В спомогательная тормозная система предназначена для длительного поддержания постоянной скорости, в основном на затяжных спусках. Используемые в остальных тормозных системах фрикционные тормозные механизмы при длительной работе перегреваются и резко снижают эффективность торможения. Поэтому на некоторых типах автомобилей (автобусы, грузовые автомобили большой грузоподъемности) для поддержания безопасной скорости на длительных спусках применяют вспомогательные механизмы, так называемые тормоза-замедлители.

А втоматическая тормозная система — оборудование, автоматически затормаживающее прицеп при его случайном отделении от тягача.

Содержание:

1. П ривод тормозной системы

2. Т ормозная система и ее обслуживание

Работа тормозной системы непосредственно влияет на безопасность движения, поэтому обслуживание тормозной системы автомобиля залог правильной эксплуатации транспортного средства.

Ремонт систем и узлов автомобиля всегда сопровождается планированием ремонта, который зависит от различных факторов. Тем более если вы хотите, чтобы ваш ремонт был экономически целесообразен, нужно понимать, что разборка стоит денег, поэтому важно заменить все узлы и детали системы, ресурс которых на подходе. В данный момент мы рассматриваем тормозную систему, поэтому при замене тормозных колодок мы обращаем внимание на тормозные диски.

Сроки замены тормозных дисков или протачивание тормозных дисков

Обычно, износ тормозных дисков сопоставим по времени с износом двух пар колодок, это если говорить образно, учитывая, что эксплуатация автомобиля имела постоянный характер. Если характер движения меняется, в процессе эксплуатации появляются элементы интенсивной езды, может наступить преждевременный износ дисков.

Некоторые умудряются «убить» тормозные диски при спокойной езде. Для этого достаточно попасть в лужу после интенсивного торможения. В этом случае вода и влага попадет на чугунный диск, соответственно перепад температур сделает свое дело, на рабочих поверхностях диска со временем появятся элементы коробления, что в итоге будет передаваться на рулевое колесо и педаль тормоза.

Материалы изготовления тормозных дисков

Самым распространенным материалом для изготовления тормозных дисков является чугун. У чугунных тормозных дисков есть свои недостатки: на чугун сильно влияют какие-либо перепады температур, что приводит к изменению внутренней структуры чугуна и характеристик материала (твердость).

На рынке есть альтернативные варианты, такие как тормозные диски из композитных или керамических материалов, но их стоимость существенно выше.

Как узнать, что надо менять тормозные диски?

Во время замены тормозных колодок нужно внимательно осмотреть поверхность тормозного диска на наличие повреждений и трещин. Следует визуально и если требуется приборным методом измерить толщину тормозного диска, которая должна быть не меньше 50 % от номинала. Выход износа тормозного диска за допустимые параметры является показанием к их замене.

Чтобы узнать, нужно ли менять тормозные диски, следует обратить внимание на лишние вибрации на рулевом колесе и педали тормоза. Если при торможении возникает какая-либо вибрация, проведите эксперимент – отпустите педаль тормоза, если вибрация уйдет, меняйте тормозные диски. Есть некая альтернатива замене дисков (в определенных случаях) – протачивание тормозных дисков.

Протачивание тормозных дисков: за и против

Если на поверхности тормозного диска образовалась выработка в виде местного коробления, альтернативой к замене тормозных дисков будет протачивание тормозных дисков. Протачивание тормозных дисков проводится при не сильном износе диска по толщине. Это объясняется тем, что слишком тонкий тормозной диск очень плохо переносит тепловую нагрузку, что может привести к полному его разрушению. Поэтому перед тем, как протачивать тормозные диски проводят замеры толщины диска, степени коррозии и величины биения тормозного диска.

Что лучше проточить или заменить тормозной диск

Конечно стоимость проточки тормозных дисков ниже, чем стоимость замены тормозных дисков. Главное, чтобы толщина диска позволяла проводить операцию по расточке. При этом, чтобы избежать тормозного дисбаланса, следует протачивать оба тормозных диска и не забудьте заменить тормозные колодки. Старые тормозные колодки будут негативно влиять на проточенные тормозные диски.

Проточка передних тормозных дисков с заменой колодок будет варьироваться от 30 до 50 долларов.

Стоимость оригинальных тормозных дисков от 60 до 120 долларов.

Чтобы определится, что лучше покупать новые тормозные диски или проточить оригинальные тормозные диски, следует понимать, что заводские тормозные диски намного надежнее. Поэтому лучше искать оригинальные запчасти, а если финансы не позволяют, лучше проточить заводские тормозные диски.

Существует ряд фирм, специализирующихся на выпуске современных тормозных систем для спортивных автомобилей. В этой статье мы рассмотрим устройство современной тормозной системы автомобиля.

Тормозная система предназначена для снижения скорости автомобиля, здесь вы узнаете как устроена тормозная система и как работает тормозная система автомобиля.

Каким требованиям должна соответствовать современная тормозная система? Назначение тормозной системы.

Тормозная система служит для уменьшения скорости движения автомобиля, полной остановки автомобиля и удержания автомобиля на месте. Процесс торможения происходит за счет возникновения силы трения между колесами и дорогой.

Стояночная тормозная система была создана для возможности удержания автомобиля в неподвижном состоянии при стоянке, иногда выполняет функции запасной тормозной системы, затормаживая автомобиль в случае отказа рабочей тормозной системы.

Как работает тормозная система при нажатии на педаль тормоза?

При нажатии на педаль тормоза на тормозной цилиндр передается усилие, в поршне главного тормозного цилиндра создается давление, которое передается в систему, и передает его через трубопроводы к рабочим цилиндрам на колесах, которые прижимают колодки к тормозным дискам. Чем сильнее нажимаешь на педаль тормоза, тем больше создается давление в системе, что в итоге приводит к появлению тормозных сил в точке контакта резины с дорогой. Чем сильнее вы нажмете на педаль тормоза, тем быстрее и качественнее затормозит автомобиль.

Завершение торможения сопровождается перемещение педали тормоза в исходное положение, что обеспечивается возвратной пружиной. Поршень главного тормозной цилиндра движется в начальное положение, и тормозная жидкость возвращается в главный тормозной цилиндр, при этом разжимаются тормозные колодки.

Тормозная система приводится в действие с помощью тормозного привода.

Привод современной тормозной системы различается по способу воздействия :
  1. Механический привод тормозов ( представляет собой систему тросов и рычагов, которые посредством механического соединения воздействуют на тормозные механизмы для осуществления процесса торможения) ;
  2. Гидравлический привод тормозов ( представляет собой систему, работа которой основана на гидравлическом взаимодействии деталей тормозной системы). Устройство гидравлического привода тормозов включает следующие детали: педали тормоза, усилитель тормозного усилия, главный тормозной цилиндр, соединительные гидравлические шланги, и тормозные механизмы. Гидравлический привод тормозной системы получил широкое распространение в современном автомобиле строении благодаря возможности системной работы с электронными системами торможения, такими как :

Система распределения тормозных усилий ;

Электронная система блокировки дифференциала.

Принцип работы гидравлического привода тормозов основан напередаче тормозной жидкостик тормозным механизмам через шланги тормозной системы. Работа гидравлического привода тормозов начинается после нажатия педали тормоза, после чего вступает в работу главный тормозной цилиндр ( основной элемент тормозной системы, который служит для преобразования механической работы (нажатие на педаль тормоза), в гидравлическую) . Создается давление тормозной жидкости в системе, вследствие которого осуществляется работа тормозных механизмов, тормозной поршень разжимает колодки, и прижимает их к тормозным дискам, за счет чего происходит трение между ними и автомобиль начинает уменьшать скорость.

3 . Электрический привод тормозов (основан на использовании источника электрической энергии). Преимущества электрического привода тормозов в простоте конструкции и в удобстве эксплуатации. К основным недостаткам электрического привода тормозов можно отнести потребность в мощном источнике электрической энергии, из-за чего электрический привод тормозов не пользуется популярностью сегодня ;

4. Пневматический привод тормозов ( для процесса торможения автомобиля использует сжатый воздух).

5. Комбинированный привод тормозов (основан на сочетании пневматического и гидравлического приводов) .

АБС это система, которая существенно повышает безопасность движения автомобиля на дорогах.

На сегодняшний день устройство современного автомобиля обязательно включает антиблокировочную систему. Работа системы АБС помогает водителю избегать неприятных аварийных ситуаций на дороге. Эта система незаменима для начинающих водителей.

Основная цель АБС — во время экстренного торможения сохранить управляемость автомобиля.

В каких случаях вступает в работу система АБС?

АБС вступает в работу в случае блокировки колес, ведь у блокируемых колес сцепление с дорогой намного ниже, чем у колеса, котящегося по дороге. В этом случае у блокируемого колеса управление и тормозные силы не контролируемые. АБС выполняет функцию контроля работы колеса. АБС регулирует сцепление шин с покрытием за счет передачи тормозных усилий таким образом, чтобы степень проскальзывания колес с дорогой составляла от 15 до 20%.

Устройство системы АБС и работа системы АБС

1) Главный тормозной цилиндр;

2) Модуль АБС

3) Выпускной электромагнитный клапан

4) Тормозной суппорт

5) Впускной электромагнитный клапан

6) Аккумулятор давления

7) Электродвигатель насоса

8) Насос

9) Амортизационная камера

Работа системы АБС заключается в следующем:

1) Во время обычного торможения клапаны системы АБС не задействованы и необходимое усилие торможение контролирует водитель с помощью педали тормоза;

2) Во время торможения с проскальзыванием с возможностью блокировки включается система АБС.

Современные системы АБС имеют возможность регулировать усилия торможения отдельно для каждого колеса. При приближенности колеса к блокировке система АБС начинает удерживать давление. Клапаны начинают отсекать суппорт колеса от главного тормозного цилиндра – что обеспечивает постоянное независимое давление на рабочие поршни независимо от усилия нажатия на педаль.

Если проскальзывание колеса становится более 20%, происходит спад давления, которое регулирует насос, сбрасывая тормозную жидкость из суппорта в главный цилиндр.

Если проскальзывание колеса становится ниже 20%, система АБС повышает давление при помощи открытия клапанов.

Современная система АБС чередует режимы работы, обеспечивая надежную работу.

Дополнительные сигналы торможения способствуют улучшению предупреждения других водителей о торможении вашего автомобиля в целях повышения безопасности движения транспортных средств. Правила дорожного движения предусматривают установку на легковом автомобиле дополнительных сигналов торможения красного цвета. А места их расположения регулируются не ниже 1150 мм и не выше 1400 мм над поверхностью дороги. А это говорит о том, что дополнительно установить сигналы торможения можно в салоне автомобиля. На рисунке показано правильное расположение дополнительных сигналов торможения.

Для сигналов торможения рекомендуется применять специальные фонари заводского изготовления. Такие фонари имеются в розничной продаже. Лампы таких фонарей достаточно подключить параллельно основным сигналам тормозов и приводятся в действие от нажатия на педаль тормоза.

Запрещается

устанавливать дополнительные сигналы торможения на грязи защитниках задних колес, так как при таком расположении водители грузовых автомобилей их не видят, а это противоречит правилам дорожного движения.

В соответствии с техническими услови­ями, эти тормозные жидкости обеспечивают устой­чивую и надежную работу тормозных систем. Технические требования к тор­мозным жидкостям определяются нор­мативными документами (стандарты SAE J 1703, FMVSS 116, ISO 4925). Эксплуатационные характеристики тор­мозных жидкостей содержатся в Феде­ральных требованиях безопасности ав­томобильного транспорта в США (FMVSS 116), а также в других нацио­нальных нормативных документах. Ос­новные свойства тормозных жидкостей, соответствующие требованиям мини­стерства транспорта США (DOT).

Установившаяся температура кипения

Определяет величину сопротивления тормозной жидкости тепловым нагруз­кам. Теплота, образующаяся при работе тормозных гидроцилиндров колес (наи­большая температура во всей тормоз­ной системе) является критическим па­раметром безопасной работы тормозной системы. При температуре, превышаю­щей точку кипения, происходят интен­сивное образование воздушных пузырь­ков испаряющейся тормозной жидко­сти, что может привести к отказам в работе тормозной системы.

Влажностная точка кипения. Этот параметр характеризует устано­вившуюся температуру кипения тор­мозной жидкости в зависимости от аб­сорбируемой влаги (приблизительно 3,5%). Вследствие попадания в тормоз­ную жидкость воды точка кипения сни­жается. Абсорбция влаги происходит, в основном, за счет диффузии воды через гибкие трубопроводы тормозной систе­мы. Вследствие этого гибкие соедини­тельные трубопроводы заменяются че­рез 1 -2 года. На рис. (см. с. 254) пока­зана зависимость снижения точки кипения двух типов тормозной жидко­сти от абсорбируемой в ней воды.

Вязкость. Чтобы обеспечить надежную работу тормозной системы в диапазоне тем­ператур от -40 до + 100 е С, вязкость тормозной жидкости должна оставать­ся по возможности постоянной с мини­мальной зависимостью от температу­ры. Поддержание минимально воз­можной величины вязкости при очень низких температурах особенно акту­ально при использовании анти блоки­ровочной системы тормозов (ABS), си­стемы регулирования тягового усилия на колесах (TCS) и системы электрон­ного управления устойчивостью дви­жения (ESP).

Сжимаемость. Тормозная жидкость должна в процессе эксплуатации сохранять низкий уровень сжимаемости и иметь минимальную чувствительность к колебаниям темпе­ратуры.

Защита от коррозии. Стандарт FMVSS 116 регламентирует требования к тормозной жидкости по защите от коррозии: она не должна ока­зывать коррозирующего воздействия на металлические детали тормозной сис­темы. Защитные антикоррозийные свойства обеспечиваются внесением в тормозную жидкость специальных при­садок.

Набухание эластомеров. Допускаемая величина набухания эластомеров под воздействием тормозной жидкости не должна превышать 10%. При большей величине набухания прочностные свойства эластомеров существенно снижаются, уже незначительное загрязнение минеральным маслом, растворителя) тормозной жидкости на гликолей основе может привести к разрушению резиновых изделий (таких, как уплотнения) и выходу из строя всей тормозной системы.

Химический состав тормозной жидкости, как подобрать тормозную жидкость по химическому составу?

Гликоли. Большинство тормозных жидкостей основано на различных соединениях гликолей (двухатомных спиртов). Хотя эти соединения используются для получения тормозных жидкостей, удовлетворяющих требования стандарта DOT 3. их превышенные гигроскопические свойств являются причиной относительно встрой абсорбции влаги, сопровождающейся снижением температуры кипения тормозной жидкости. При условии, если свободные гидроксилы частично связаны сложными эфирами с борной кислотой. >разуется высококачественная тормозная жидкость DOT 4 (или «DOT 4+», Super DOT 4»), которая, при взаимодействии с влагой, полностью ее нейтрализует. Поскольку снижение темпе­ратуры кипения тормозной жидкости DOT 4 за время ее эксплуатации происходит значительно медленнее по сравнению с жидкостью DOT 3, срок службы увеличивается.

Жидкости на основе минеральных масел (ISO 7308). Преимуществом тормозных жидкостей созданных на основе минеральных масел. является отсутствие у них гигроскопичности, поэтому температура кипения (при отсутствии абсорбции влаги не снижается. Минеральные и синтетические масла для тормозных жидкостей отбираются с особой тщательностью. Для обеспечения как можно меньшей зависимости вязкости от температуры в тормозную жидкость добавляются спе­циальные присадки.

Нефтяная промышленность, помимо топлив, также поставляет для тормоз­ных жидкостей различные присадки, улучшающие их свойства. Следует от­метить, что не рекомендуется в тормоз­ные системы, в которых в качестве тормозной жидкости применяются гликоли добавлять тормозные жидкости, соз­данные на основе минеральных масел (или наоборот), чтобы не допустить на­бухания эластомеров.

Силиконовые жидкости (SAE J 1705). Поскольку силиконовые жидкости, так­же как и минеральные масла, не абсор­бируют влагу, они в ряде случаев ус­пешно применяются в качестве тормоз­ной жидкости. Недостатками сили­коновых жидкостей являются сущест­венно более высокая сжимаемость и худшие смазывающие свойства, что ог­раничивает их применение в качестве рабочей жидкости во многих гидравли­ческих системах,

Устройство тормозной системы с гидравлическим приводом

Доклад на тему:

Устройство тормозной системы с гидравлическим приводом

1.1 Назначение тормозной системы, ее виды

Тормозное управление автомобиля должно включать рабочую, запасную, стояночную и вспомогательную тормозные системы. При всех режимах движения автомобиля для снижения его скорости до полной остановки используют рабочую тормозную систему, которая приводится в действие нажатием ноги водителя на педаль ножного тормоза. Рабочая тормозная система обладает наибольшей эффективностью из всех типов тормозных систем. Запасная тормозная система предназначена для остановки автомобиля в случае отказа основной рабочей системы. Она обладает меньшим тормозящим действием, чем рабочая система. Обычно функции тормозящей системы может выполнять исправная часть рабочей тормозной системы или полностью стояночная система. Вспомогательная тормозная система обязательна для автобусов грузоподъемностью свыше 5 т и грузовых автомобилей грузоподъемностью свыше 12 т. Вспомогательная тормозная система предназначена для торможения на длинных спусках. Она должна поддерживать скорость 30 км/ч на спуске с уклоном 7 % протяженностью 6 км. В некоторых видах автомобилей тормозом-замедлителем является двигатель, выпускной трубопровод которого перекрывается специальной заслонкой. Замедление может осуществляться и при переводе двигателя в компрессионный режим.

Тормозные механизмы при работе системы препятствуют вращению колес, в результате между колесами и дорогой образуется тормозная сила, останавливающая автомобиль.

В зависимости от конструкции вращающихся рабочих деталей тормозных механизмов различают тормоза барабанные и дисковые.

Тормозная система с гидравлическим приводом одновременно выполняет функции рабочей, запасной и стояночной систем.

1.2Устройство тормозной системы

Тормозная система состоит из тормозного механизма и тормозного привода.

Размещают тормозные механизмы на передних и задних колесах. Тормозной привод передает усилие от ноги водителя на тормозные механизмы. На всех легковых автомобилях и грузовых автомобилях грузоподъемностью до 7,5 т применяют тормозной гидропривод, который состоит из главного тормозного цилиндра, рабочих тормозных цилиндров, гидравакуумного усилителя, трубопроводов, педали тормоза с элементами крепления.

Барабанный тормозной механизм с гидравлическим приводом состоит из двух колодок с фрикционными накладками, установленных на опорном диске. Нижние концы колодок закреплены шарнирно на опорах, а верхние концы упираются через стальные сухари, колодки в поршни разжимного колесного рабочего цилиндра.

Стяжная пружина прижимает колодки к поршням цилиндра, обеспечивая зазор между колодками и тормозным барабаном в нерабочем положении тормоза. При поступлении жидкости из привода в колесный рабочий цилиндр его поршни расходятся и раздвигают колодки до соприкосновения с тормозным барабаном, который вращается вместе со ступицей колеса. Возникающая сила трения колодок о барабан вызывает затормаживание колеса. После прекращения давления жидкости на поршни рабочего цилиндра стяжная пружина возвращает колодки в исходное положение и торможение прекращается.

На автомобилях ГАЗ с той же целью предусмотрен в приводе тормозов разделитель, который позволяет использовать исправный контур тормозной системы в качестве запасной, если в аварийной ситуации откажет другой контур. Иногда в тормозных системах с гидроприводом применяют дисковые тормозные механизмы на передних колесах и барабанные – на задних; в приводе к дисковым тормозным механизмам устанавливают клапан задержки, который вызывает одновременное начало торможения всех колес автомобиля. Клапан задержки необходим потому, что для прижатия колодок в барабанных тормозных механизмах необходимо вначале создать некоторое давление для преодоления усилия стяжных пружин. В дисковых тормозных механизмах таких растормаживающих пружин нет .Основными элементами гидравлического привода в тормозной системе автомобилей ГАЗ являются главный тормозной цилиндр, колесный тормозной цилиндр, гидровакуумный усилитель. Корпус главного тормозного цилиндра выполнен совместно с резервуаром для тормозной жидкости. Внутри цилиндра находится алюминиевый поршень с уплотнительным резиновым кольцом. Поршень передвигается под действием толкателя, шарнирно соединенного с педалью. Днище поршня упирается в уплотнительную манжету, которая прижимается пружиной. Эта же пружина прижимает к гнезду впускной клапан, совмещенный с нагнетательным. Внутренняя полость цилиндра сообщается с резервуаром через компенсационное и перепускное отверстия. Главный тормозной цилиндр приводится в действие от тормозной педали. При нажатии на тормозную педаль под действием толкателя поршень с манжеткой перемещается и закрывает компенсационное отверстие, из-за чего давление тормозной жидкости в цилиндре увеличивается, открывая нагнетательный клапан, и жидкость поступает к тормозным механизмам. При отпуске педали давление жидкости в приводе снижается, и она перетекает по трубопроводам обратно в цилиндр. При этом избыток тормозной жидкости через компенсационное отверстие возвращается в резервуар. В это же время пружина, действуя на впускной клапан, поддерживает в системе привода избыточное давление и после полного отпускания педали тормоза.

Тормозная жидкость в полость цилиндра поступает через присоединительный штуцер. Для выпуска воздуха из тормозной системы в колесном тормозном цилиндре имеется клапан прокачки, защищенный резиновым колпачком. В корпус цилиндра вставлено с натягом пружинное упорное кольцо. Оно служит для регулировки зазора между колодками и барабаном тормозного механизма.

В поршне усилителя расположен запорный шариковый клапан управления, состоящий из диафрагмы, поршня и самого клапана. Здесь же размещен вакуумный клапан и связанный с ним при помощи штока атмосферный клапан. Первая и вторая полости клапана управления сообщаются соответственно с третьей и четвертой полостями камеры усилителя, которая через запорный клапан соединена с выпускным коллектором двигателя.

В случае, когда работает двигатель и тормозная педаль отпущена, в полостях камеры усилителя существует разрежение, и все детали гидроцилиндра находятся под действием конической пружины в левом крайнем положении. При нажатии на педаль тормоза жидкость от главного тормозного цилиндра перетекает через шариковый клапан в поршне усилителя к тормозным механизмам колес. По мере повышения давления в системе поршень клапана управления поднимается, закрывает вакуумный клапан и открывает атмосферный клапан. Атмосферный воздух через фильтр попадает в четвертую полость и уменьшает в ней разрежение. Поскольку в третьей полости разрежение продолжает сохраняться, разность давлений между третьей и четвертой полостями выгибает диафрагму, сжимая пружину усилителя, и через шток воздействует на поршень усилителя, который в этом случае испытывает давление двух сил: жидкости от главного тормозного цилиндра и атмосферное со стороны диафрагмы, что усиливает эффект торможения. Когда педаль тормоза отпускают, давление жидкости на клапан управления снижается, его диафрагма прогибается вниз и открывает вакуумный клапан, сообщая между собой третью и четвертую полости. Давление в четвертой полости падает, и все подвижные детали камеры и цилиндра усилителя перемещаются в исходное положение, происходит растормаживание тормозных механизмов колес. При неисправностях гидроусилителя привод работает только от педали главного тормозного цилиндра

1.3Принцип действия тормозного гидропривода

Принцип действия тормозного гидропривода состоит в следующем. При нажатии на педаль тормоза поршень главного цилиндра давит на жидкость, которая перетекает по трубопроводам к колесным рабочим цилиндрам. Поскольку жидкость практически не сжимается, она передает усилие нажатия тормозным механизмам колес, преобразующим это усилие в сопротивление вращению колес и вызывающим торможение автомобиля. Если педаль тормоза отпустить, жидкость перетечет по трубопроводам обратно к главному тормозному механизму и колеса растормозятся. Гидра вакуумный усилитель облегчает создание дополнительного усилия, передаваемого на тормозные механизмы, и тем самым облегчает управление тормозной системой.

Принцип работы колесного тормозного цилиндра следующий. Когда начинается торможение, под действием давления тормозной жидкости поршень цилиндра перемещается и отжимает тормозную колодку. По мере изнашивания ход поршня при торможении увеличивается и наступает момент, когда он передвигает упорное кольцо, преодолевая усилие его посадки. При обратном перемещении колодки под действием растормаживающей стяжной пружины упорное кольцо остается на новом месте, так как усилия пружины недостаточно, чтобы сдвинуть его назад. Так происходит автоматическая выборка увеличения зазора между колодкой и барабаном, который образовался из-за износа накладки.

Работа гидравакуумного усилителя основана на использовании энергии разряжения во внутреннем трубопроводе двигателя, благодаря чему создается дополнительное давление тормозной жидкости в гидравлической системе привода тормозов. Это позволяет при сравнительно небольших усилиях, прилагаемых к тормозной педали, получать большие усилия в тормозных механизмах колес. С главным тормозным цилиндром, впускным коллектором двигателя и разделителем тормозов гидроусилитель соединен трубопроводами.

1.4Эксплуатационные материалы

На грузовых автомобилях малой и средней грузоподъемности тормозные барабаны обычно изготовляют биметаллическими. Это может быть стальной диск, залитый чугунным ободом, или тормозной барабан из алюминиевого сплава с залитым внутрь чугунным кольцом. На грузовых автомобилях большой грузоподъемности используют литые тормозные барабаны, как правило, из серого чугуна.

На автомобилях высокого класса дисковые тормозные механизмы изготавливают обычно из листовой стали.

В скобе имеются два рабочих тормозных цилиндра, изготовленных из алюминия.

В цилиндрах установлены стальные поршни, которые уплотняются резиновыми кольцами.

Формованные фрикционные накладки в настоящее время все чаще изготовляют без асбестовыми, так как без асбестовые накладки экологически чистые. Применяют и пластмассовые накладки, в состав которых входит эбонит и другие компоненты. Для дисковых и барабанных тормозных механизмов используют накладки из асбокаучуковых композиций. Накладки прикрепляют к колодкам заклепками, болтами или приклеивают. Тормозные колодки изготовляют из листовой стали, для грузовиков изготовляют литые колодки из чугуна.

Колесный тормозной цилиндр барабанного тормозного механизма состоит из чугунного корпуса, внутрь которого помещены два алюминиевых поршня с уплотнительными резиновыми манжетами. В наружные торцы поршней для уменьшения изнашивания вставлены стальные сухари. С обеих сторон цилиндр уплотнен пылезащитными резиновыми чехлами.

Камера усилителя представляет собой изготовленные из стали корпус.

Жидкость для тормозной системы и гидропривода сцепления залита в единый бачок, расположенный на главном тормозном цилиндре. Уровень жидкости должен находиться между метками MIN и МАХ на соответствующем бачке. Рекомендуемый тип жидкости — тормозная жидкость DOT4+, либо DOT5 и выше.

Следует регулярно проверять уровень тормозной жидкости, заменять которую необходимо раз в два года.

При вождении в горных районах) или при эксплуатации автомобиля в тропическом климате с высокой влажностью тормозную жидкость следует заменять каждый год.

тормозной гидравлический технический ремонт

Схема устройства и работы гидравлической тормозной системы

автомобиля:


1 — тормозной диск;
2 — скоба тормозного механизма передних колес;
3 — передний контур;
4 — главный тормозной цилиндр;
5 — бачок с датчиком аварийного падения уровня тормозной жидкости;
6 — вакуумный усилитель;
7 — толкатель;
8 — педаль тормоза;
9 — выключатель света торможения;
10 — тормозные колодки задних колес;
11 — тормозной цилиндр задних колес;
12 — задний контур;
13 — кожух полуоси заднего моста;
14 — нагрузочная пружина;
15 — регулятор давления;
16 — задние тросы;
17 — уравнитель;
18 — передний (центральный) трос;
19 — рычаг стояночного тормоза;
20 — сигнализатор аварийного падения уровня тормозной жидкости;
21 — выключатель сигнализатора стояночного тормоза;
22 — тормозная колодка передних колес

У современных приводов давление жидкости при экстренном торможении может достигать 10–15 МПа.
При отпускании тормозной педали она под действием возвратной пружины перемещается в исходное положение. В исходное положение своей пружиной возвращается также поршень главного тормозного цилиндра, стяжные пружины механизмов отводят колодки от барабанов (дисков). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр.

2 Виды тормозных систем и эксплуатационные неисправности гидравлической системы с гидровакуумным усилителем

2.1Существует довольно много вариантов исполнения тормозных систем. Не все они используются при конструировании автомобилей. По предназначению можно выделить следующую классификацию:

  • Механизм рабочего предназначения необходим для регулирования скорости машины во время движения. Этот вариант исполнения самый востребованный, так как применяется на протяжении всего движения. В последнее время конструкция подобной системы значительно усложняется путем включения в систему различных устройств по контролю усилия, проскальзывания колес и так далее.

  • Тормоз стояночного типа применяется на момент стоянки или кратковременной остановки. Согласно установленным правилам именно стояночный тормоз стоит использовать на момент остановки под горку, на светофоре и в других подобных случаях. Зачастую задействовать системы можно при помочи специального рычага, современные автомобили имеют электрический включатель. На легковых автомобилях от рычага проложен трос, которые сразу идет к задним колесам. Грузовые имеют воздушную систему с установленными энергоаккумуляторами.

Также можно отметить вспомогательную тормозную систему, которую зачастую включают в конструкцию грузовых автомобилей, автобусов. Ее работа основана перекрытии выпускного трубопровода, который подает топливо в двигатель. Используют систему при длительном спуске, так как рабочая может перегреться и потерять свою эффективность. Также проведем рассмотрение того, какие тормоза еще бывают по типу привода.

Важным показателем также можно назвать то, какой тип системы приводит в движение исполнительный механизм, который непосредственно выполняет торможение. По данному показателю можно выделить:

  • Механический привод. Использовался на старых автомобилях. Имеет высокую надежность, но при этом малую эффективность работы. Механические привод основывался на использовании системы тяг для приведения исполнительного органа в движение, при нажатии на педаль.

  • Гидравлический получил широкое применение при создании современных легковых автомобилей. Его работа основана на не сжимаемости используемой рабочей жидкости. Система представлена несколькими исполнительными органами, а давление передается при помощи жидкости.

  • Пневматическая система работает на основе сжатого воздуха. Как и жидкость, газообразные вещества имеют предел сжимаемости. Именно поэтому газообразные вещества, зачастую именно воздух, используются для передачи усилия.

  • Существует также комбинированный вариант исполнения, когда в системе используется как воздух, так и жидкость. Зачастую подобную систему можно встретить на грузовых автомобилях и автобусах.

  • Электронный вариант исполнения используется крайне редко, так как надежность подобной системы находится на относительно низком уровне. Ак правило, чем проще система, тем она надежнее. Именно поэтому довольно редко проводится установка электрической тормозной системы, когда команда на исполнительный орган передается при помощи электричества.

2.2 Возможные неисправности тормозной системы

Ocнoвныe пpичины нeиcпpaвнocти

Ecть чeтыpe ocнoвныx пpичины, кoтopыe пpивoдят к нapyшeниям paбoты этoй cиcтeмы.

Этo:

-зacopилиcь pecивepы, шлaнги, тpyбoпpoвoды или oни пepecтaли быть гepмeтичными;

-утeчкa cжaтoгo вoздyxa

-зaщитныe клaпaнa – нeиcпpaвны дaтчики и пopшнeвыe кoльцa paбoтaют нeдoлжным oбpaзoм.

-чтoбы пpeдoтвpaтить нeиcпpaвнocть тopмoзнoй cиcтeмы KAMAЗa, вaм нaдo ee пpoвepять. Дeлaeтcя этo oдин paз в двa гoдa.

Kaкиe нeиcпpaвнocти вcтpeчaютcя чaщe вceгo и пoчeмy oни пoявляютcя?

1. Boздyшныe бaллoны зaпoлняютcя мeдлeннo или к ним вooбщe нeпocтyпaeт вoздyx. Чacтo из-зa этoгo cpaбaтывaeт peгyлятop дaвлeния.

Этo cлyчaeтcя из-зa тoгo, чтo в кopпyce бaллoнa пoявилacь тpeщинa или кaкoй-либo дpyгoй изъян.

2. Boздyшныe бaллoны тpeтьeгo и чeтвepтo гoкoнтypoв не зaпoлняютcя.

Bинoю мoгyт быть зacopeнныe тpyбoпpoвoды, пoвpeждeнныe кopпyca двoйнoгo зaщитнoго клaпaнa или cлoмaнный клaпaн.

3. Boздyшныe бaллoны пepвoгo и втopoгo кoнтypoв нe зaпoлняютcя.

Toгдa вaм нyжнo ocмoтpeть тpyбoпpoвoды и тpoйнoй зaщитный клaпaн. Boзмoжнo, тyдa пoпaлa гpязь. Taкжe мoжeт быть, чтo в тpoйнoм зaщитнoм клaпaнe нeт нeoбxoдимoгo зaзopa.

4. Boздyшныe бaллoны пpицeпa нe зaпoлняютcя.

Tyт пpичинa тoлькo oднa: yзлы, yпpaвляющиe тopмoзaми пpицeпa, вышли из cтpoя.

5. B бaллoнax пepвoгo и втopoгo кoнтypoв дaвлeниe пoвышeннoe или пoнижeннoe.

Этo мoжeт cлyчитьcя пo пpичинe тoгo, чтo нapyшилacь peгyлиpoвкa peгyлятopа дaвлeния или cлoмaлcя двyxcтpeлoчный мaнoмeтp.

6. Haжимaeшь нa пeдaль тормоза дo yпopa, a гpyзoвик нe cнижaeт cкopocти.

Cкopeй вceгo, нeпpaвильнo oтpeгyлиpoвaн пpивoд тopмoзнoгo кpaнa, cлoмaлcя клaпaн oгpaничeния дaвлeния или caм кpaн, или пpивoд eгo peгyлятopa ycтaнoвлeн нeпpaвильнo, или xoд штoкoв тopмoзныx кaмep пpeвышaeт 4 cм.

7. Hepaбoтaют cтoянoчный или зaпacнoй тopмoзa.

Этo мoжeт быть, пoтoмy чтo cлoмaлcя ycкopитeльный клaпaн, тopмoзнoй кpaн oбpaтнoгo дeйcтвия, кpaн aвapийнoгo pacтopмaживaния, пpyжины энepгo-aккyмyлятopa, или xoд штoкoв тopмoзныx кaмep cлишкoм бoльшoй.

8. Koгда eдeшь, тo зaдняя тeлeжкa тopмoзитьcя caмoпpoизвoльнo.

Пpичинa мoжeт быть в тoм, чтo нeпpaвильнo oтpeгyлиpoвaн или cлoмaлcя двyx ceкциoнный тopмoзнoй кpaн или нapyшилиcь yплoтнeния в энepгoaккyмyлятope.

9. Bcпoмoгaтeльнaя cиcтeмa нe paбoтaeт.

Пpичины:

-слoмaлcя пнeвмaтичecкий кpaн

-слoмaлиcь мexaнизмы зacлoнoк или элeктpoмaгнитный клaпaн

10. B пнeвмocиcтeмe cкaпливaeтcя мacлo.

Бoльшaя вepoятнocть, чтo изнocилиcь пopшнeвыe кoльцa либo нeиcпpaвны цилиндpы кoмпpeccopa.

3 Последовательность удаления воздуха из системы

Воздух из гидропривода тормозной системы автомобиля удаляют в следующем порядке:

• проверяют уровень тормозной жидкости в наполнительном бачке главного тормозного цилиндра и при необходимости доливают жидкость до заданной отметки;

• снимают резиновый колпачок с клапана выпуска воздуха колесного тормозного цилиндра и на него надевают резиновый шланг, конец которого опускают в емкость с тормозной жидкостью;

• отвертывают на пол-оборота клапан выпуска воздуха и резко нажимают на педаль тормоза несколько раз;

• удерживают в нажатом положении до выхода пузырьков воздуха

• завертывают клапан при нажатой педали.

Далее в таком порядке прокачивают остальные колесные цилиндры.

При прокачке следует постоянно доливать жидкость в наполнительный бачок

4 Характеристика применяемых жидкостей.

Тормозная жидкость должна оставаться жидкостью, то есть при рабочих условиях не кипеть и не замерзать;

рабочая температура тормозной жидкости колеблется от — 50 (в сильный мороз) до + 150 при динамичном ускорении. В случае закипания тормозной жидкости пузырьки пара вытесняют некоторую ее часть в расширительный бачок ГТЦ и в систему трубопроводов. В системе остается жидкость, перемешанная с пузырьками пара. Но если сама жидкость несжимаема, то микроскопические пузырьки газа легко поддаются сжатию. При наличии газа в тормозной системе передаваемое давление в первую очередь пойдет на сжатие пузырьков во всем их суммарном объеме и только после этого давление будет передаваться на жидкость. При таком исходе педаль тормоза станет мягкой, не будет чувствоваться резкого возрастания усилия, при этом торможение будет неэффективно.
— тормозная жидкость должна сохранять свойства в течение длительного времени;

по регламенту эксплуатации автомобилей тормозная жидкость должна заменяться раз в 12 месяцев и более, все это время тормозная жидкость должна быть готова к работе в чрезвычайных ситуациях.

— не содержать влагу, что бы предотвратить коррозию элементов тормозной системы;

также влага влияет на температуру кипения тормозной жидкости, и с повышением концентрации воды температура кипения снижается. Все это связано с постоянным объемом растворенного газа в воде и закипанием воды при 100 градусах цельсия, температуре гораздо ниже чем верхний предел рабочей температуры тормозной жидкости. Поэтому тормозная жидкость должна обладать минимальной гигроскопичностью (влагопоглощением). Влага в системе способствует коррозии тормозных цилиндров и поршней, а в холодное время — возможно возникновение гидратных пробок, непроходимость трубопроводов и как следствие отказ системы торможения. Кроме того при низких температурах даже если тормозная жидкость не замерзла, критичным параметром становится вязкость — если она увеличится, то заметно возрастет время срабатывания тормозов. Так в частности в стандарте, разработанном Международным объединением инженеров транспорта (SAE), прямо указано, что вязкость тормозной жидкости при -40oС не должна превышать1800 сСт (мм2/с). Кроме SAE, требования к тормозным жидкостям отражены в в нормативных документах Департамента транспорта США. Федерального общества по безопасности транспортных средств — U.S. Department oftransprotation. Federal motor carrier safety administration. В них предусмотрены три нормативных класса: DOT-3, DOT-4 и DOT-5.1. но об этом далее.

На графике приведена зависимость температуры кипения тормозной жидкости Роса от объемного содержания воды.

— не реагировать с РТИ — резинотехническими изделиями, выполняющих роль уплотнений в тормозной системе;

При разбухании изменении форм и свойств резины возможны порывы, пропуски по уплотнениям (резиновым кольцам) и трубопроводам (резиновым шлангам), ведущие к отказу срабатывания тормозов.

— смазывать механически трущиеся пары, для увеличения срока службы и предотвращения задиров, чрезмерного износа.

Смазывающие свойства жидкости обеспечивают наиболее длительную и надежную эксплуатацию механических систем тормозной системы.

Учитывая столь непростые требования, современная тормозная жидкость достаточно сложна по составу.

Рисунок 1 тормозные жидкости DOT-3, DOT-4, DOT-5.1

Томь — в состав этой жидкости тоже входит гликолевый эфир и пакет целевых присадок.
У Томи в сравнении с Невой улучшены основные эксплуатационные показатели. Поэтому ее причисляют классу, удовлетворяющему требованиям DOT-3.

Лучшая тормозная жидкость отечественного производства 

Наиболее совершенный массовый продукт отечественного гликолевого семейства — Роса. Эта жидкость основана на борсодержащем полиэфире со специальным пакетом присадок. Поэтому она удовлетворяет нормам класса DOT-4.
Роса DOT-4 полностью подходит для эксплуатации в тормозной системе современного автомобиля.

Наивысший стандарт тормозной жидкости DOT 5.1

Тормозная жидкость DOT 5.1 гигроскопична, не провоцирует коррозию и служит дольше тормозных жидкостей DOT-3, DOT-4 — имеющих гликолевую основу. Единственным минусом данной тормозной жидкости является низкая распространенность и высокая цена.

Параметры тормозных жидкостей в зависимости от стандартов.

5 Техника безопасности при проведении работ

· Операции по техническому обслуживанию автомобилей нужно выполнять в специально отведенных, оборудованных, огражденных, и обозначенных местах (постах.)

· Рабочие места и посты, в помещениях для ремонта автомобилей должны обеспечиваться безопасными условиями труда для работающих и быть соответствующим образом ограждены. На одного рабочего положено не менее 45 квадратных метра и объемом помещения не менее 15 кубических метров. Ворота рабочих помещений должны открываться наружу, иметь фиксаторы, тепловые завесы, тамбуры. Выезды из производственных помещений выполняются с уклоном 5%. Они не должны иметь порогов, ступенек, выступов. 

· Производственные помещения должны соответствовать требованиям технической этике. Так же посты должны быть обеспечены предупреждающими знаками.

· При проведении всех работ, связанных с уходом за автомобилем и его техническим обслуживанием, надо строго соблюдать необходимые меры безопасности, имея в виду, что автомобиль является средством повышенной пожарной, экологической и функциональной опасности.

· В помещении мастерской всегда поддерживать порядок. Не оставлять замасленных тряпок, способных вызвать самовозгорание, содержать электропроводку в исправном состояние, применять переносные лампы напряжением не более 12 В.

· В помещениях, где обслуживаются автомобили, не хранить бензин, баллоны с газом, краску и другие легковоспламеняющиеся вещества и предметы, не использовать газовые горелки и паяльные лампы, имеющими открытый факел огня, а также не применять самодельные электроподогревающие устройства и не курить.

· При продувке гидропривода тормозной системы автомобиля, а также при заливке тосола, оказывающего отравляющее действие на организм человека, не подсасывать его через шланг ртом, а использовать магистральный сжатый воздух или насос для подкачки шин.

· Применяемый при работах инструмент должен содержатся чистом и исправном состояние. При работах выполняемых электроинструментом соблюдать правила техники безопасности. 

6. Схема пневматической тормозной системы

Рис. 2. Воздушный компрессор тормозной системы автомобиля ЗИЛ-130

При вращении коленчатого вала поршни в цилиндрах перемещаются вверх и вниз. Когда поршень перемещается в нижнее положение, открывается впускной пластинчатый клапан, установленный в гнезде блока, нагруженный пружинами и сообщающийся с воздушной камерой блока, и в цилиндр вследствие разрежения поступает воздух. При ходе поршня вверх впускной клапан закрывается, и находящийся в цилиндре воздух сжимается, открывая пластинчатый нагнетательный клапан, и воздух поступает в воздушную полость головки, откуда через отверстие по трубке нагнетается в воздушные баллоны. Воздух в воздушную камеру компрессора при его работе поступает по шлангу из воздухоочистителя двигателя.

Смазка деталей компрессора комбинированная. Масло поступает из системы смазки двигателя по трубке, закрепленной в крышке, через уплотняющее устройство в канал коленчатого вала, обеспечивая смазку шатунных подшипников. По каналам в шатунах масло подводится к их верхним головкам. Масло, выдавливаемое из шатунных подшипников, разбрызгивается и смазывает стенки цилиндров и коренные подшипники коленчатого вала. Стекая со стенок цилиндров и других деталей, масло собирается в крышку картера и по сливной трубке поступает обратно в картер двигателя.

Цилиндры и головка компрессора охлаждаются водой, поступающей из системы охлаждения двигателя. Водяная рубашка блока компрессора соединена шлангом с впускным водяным трубопроводом блока двигателя, а водяная рубашка головки компрессора соединена с всасывающей полостью водяного насоса. Для заполнения системы охлаждения компрессора водой после заливки ее в радиатор необходимо дать поработать двигателю, а затем проверить уровень воды и долить ее.

Рабочая тормозная система автомобиля.


Рабочая тормозная система автомобиля



Рабочая тормозная система является наиболее важной основной частью тормозной системы автомобиля, поскольку в процессе эксплуатации она используется наиболее интенсивно. Основными элементами рабочей тормозной системы являются: источник энергии, тормозной привод (с усилителем или без него) и тормозные механизмы.

Источником энергии называется совокупность устройств, благодаря которым тормозная система способна выполнять работу в соответствии с функциональным назначением. Источник энергии может быть общим для всех или нескольких тормозных систем автотранспортного средства.
В автомобилях с механическим и гидравлическим тормозным приводом источником энергии выступает мускульная сила человека (водителя). При этом для уменьшения усилий, прилагаемых водителем к органам управления тормозами, в конструкции тормозной системы нередко применяют усилитель привода вакуумного или пневматического типа.

В пневматических тормозных системах для обеспечения работы тормозных механизмов используется энергия сжатого воздуха. Мускульная сила водителя в этом случае не является источником энергии, приводящим механизмы тормозов в действие, поскольку выполняет лишь функции регулятора.
Несмотря на то, что в пневмоприводах источником энергии является сжатый воздух, к источнику энергии в таких приводах относят приборы и механизмы для его получения и передачи: компрессор, регулятор давления, системы очистки и фильтрации воздуха, влагомаслоотделители, предохранители от замерзания, трубопроводы, шланги, клапаны и другие устройства.

Рабочая тормозная система должна обеспечивать уменьшение скорости и остановку транспортного средства независимо от его начальной скорости, величины уклона дороги и прочих дорожных и природно-климатических условий эксплуатации. Она должна плавно действовать на все колеса и рационально распределять тормозные моменты по колесам.

Водитель должен иметь возможность управлять рабочей тормозной системой, не отрывая обеих рук от рулевого колеса. Привод рабочей тормозной системы должен иметь не менее двух контуров. Каждый контур должен при отказе остальных контуров обеспечивать торможение всей рабочей системы с устанавливаемой нормативами эффективностью. В том случае, когда контуры привода должны выполнять функции запасной тормозной системы, каждый из них должен обеспечивать необходимую эффективность торможения, которая тоже регламентируется нормативными документами (стандартами).



В целях безопасности движения каждый контур рабочей тормозной системы с пневматическим приводом должен иметь автономный ресивер. При этом повреждение одного из контуров не должно влиять на пополнение исправных контуров сжатым воздухом.

Рабочая тормозная система должна действовать с заданной эффективностью при первом воздействии на управляющий орган (тормозную педаль, рычаг и т. п.).

Критериями эффективности тормозной системы в соответствии с ГОСТ Р 41.13-99, ГОСТ Р 41.13-99 и ГОСТ Р 41.13-2007 являются величина тормозного пути, величина установившегося замедления и время срабатывания.
Для транспортных средств, находящихся в эксплуатации, критерии оценки эффективности рабочей тормозной системы устанавливает ГОСТ Р 51709-2001. При этом для полностью груженого автомобиля нормируется только величина тормозного пути, а для снаряженного автомобиля – величина тормозного пути и установившегося замедления.

Перечисленные стандарты для каждой категории транспортных средств устанавливает свои численные значения нормируемых показателей, а также задает величины начальной скорости торможения и усилия на педаль тормозной системы.

***

Классификация тормозных приводов


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Устройство тормозной системы автомобиля, принцип работы

Тормозная система (ТС) для водителя, который меняет автомобили как перчатки, состоит их единственного элемента – педали, на которую нужно наступить в случае необходимости снизить скорость или остановить транспортное средство. Но таких счастливчиков относительно мало, поэтому давайте рассмотрим, как устроена тормозная система автомобиля подробно. Полезная информация позволит вам проникнуться уважением к дискам, тормозным колодкам и поршням, чтобы обеспечить безопасность езды.

В состав ТС входит:

  • рабочая система, которая, когда вы нажимаете на педаль с усилием менее 50 кг создает замедление авто более 5,8 м/с2 при скорости до 80 км/ч;
  • аварийная система, замедляющее движение не менее 2,75 м/с2;
  • стояночная (парковочная) система.

ТС легкового авто состоит из гидравлического привода и тормозного механизма. При воздействии на педаль, сразу же возникает повышенное давление жидкости, в результате чего срабатывают тормозные механизмы. Для обеспечения безопасности движения важно контролировать исправность ТС.

Тормозной гидравлический привод

Он состоит из таких элементов — главного тормозного цилиндра (ГТЦ), регулятора давления и магистралей рабочего трубопровода, соединяющего гидравлический привод с тормозными механизмами.

  • В ГТЦ усилие, от нажатой педали тормоза, превращается в избыточное давление жидкости, которая распределяется по магистралям. Запас жидкости находится в бачке, который обычно закреплен на ГТЦ.
  • Регулятор нужен для того, чтобы при торможении не произошло преждевременной блокировки задней колесной пары. Опрокидывающий момент, возникающий при снижении скорости, приводит к проседанию передней и разгрузке задней подвески. Чтобы в результате этого не произошел занос вашего автомобиля, торможение задних колес происходит с некоторым замедлением или же вовсе не возникает.
  • Рабочий контур состоит из двух элементов – основной и вспомогательной магистрали. В рабочем состоянии задействованы оба контура. Если в одном из контуров произошла разгерметизация, то другой становится аварийной системой тормозов. Контуры могут связывать параллельно передние и задние пары колес, подключаться по диагонали (левый спереди + правый сзади), 4+2 (один на все четыре колеса, а другой не переднюю пару).

Все детали рано или поздно подлежат обслуживанию или замене, купить запчасти для своего авто, вы можете в нашем интернет-магазине!

Тормозные механизмы

Бывают как дисковые, так и барабанные.

  • Дисковый механизм это, прежде всего, металлический диск, к которому крепится колесо. Поверхность диска с двух сторон обжимают колодки, помещенные в суппорт с цилиндром, поршень которого воздействует на колодки. Дисковые механизмы всегда устанавливаются на переднюю подвеску. Они, в отличие от барабанов, отлично вентилируются и могут работать при сравнительно более высоких температурах. При торможении в первую очередь происходит износ накладок тормозных колодок. За их состоянием необходимо постоянно следить. Повышенный износ всегда приводит к истиранию поверхности диска, а это деталь довольно дорогостоящая.
  • Барабанный механизм устанавливается на задней паре колес. Постепенно на современных авто ему на смену приходит более эффективная дисковая система. Механизм состоит из металлического барабана и колодки с накладкой.

Вспомогательная система (ВС)

ВС действует, когда произошла разгерметизация какого-либо рабочего контура. Проще говоря – при вытекании тормозной жидкости. Бачок с жидкостью разделен на два отсека. При вытекании жидкости из контура уровень в бачке вначале понижается до минимума, а затем критический объем сохраняется только в исправном контуре. Из неисправного жидкость полностью вытекает, от остающегося ресурса системы достаточно для остановки транспортного средства.

Стояночная система

Это механический привод на заднюю пару колес. Конструкция простая – рычаг и тросик, соединенный с задним тормозным механизмом. Потянули рычаг на себя, и колодки сжали барабан.

Устройство тормозной системы, как видите, ничего сложного собой не представляет. Но ее важность переоценить невозможно, поэтому постоянно проверяйте состояние колодок, дисков и количество жидкости в бачке. При малейших сомнениях отправляйтесь на диагностику и заменяйте вышедшие из строя детали.

Как работают автомобильные тормозные системы?

1) UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату.

2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.

3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к работе. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после выпуска, что в общей сложности составляет 84%. Эта ставка не включает выпускников, недоступных для трудоустройства в связи с продолжающимся образованием, военной службой, состоянием здоровья, лишением свободы, смертью или статусом иностранного студента.В рейтинг входят выпускники, прошедшие программы повышения квалификации для производителей, и лица, занятые на должностях которые были получены до или во время обучения в области ИМП, при этом основные должностные обязанности после его окончания совпадают с образовательными и учебными целями программы. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

5) Программы UTI готовят выпускников к карьере в отраслях, использующих предоставляемое обучение, в первую очередь в качестве техников для автомобилей, дизельных двигателей, ремонта после столкновений, мотоциклов и морских техников.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве техника, например: помощник по запчастям, автор услуг, производитель, покраска и подготовка к покраске, а также владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

6) Достижения выпускников УТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату.ИМП это учебное заведение и не может гарантировать трудоустройство или заработную плату.

7) Для прохождения некоторых программ может потребоваться более одного года.

10) Финансовая помощь, стипендии и гранты доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и штата.

11) См. сведения о программе, чтобы узнать о требованиях и условиях, которые могут применяться.

12) На основе данных, собранных Бюро статистики труда США, прогнозы занятости (2016–2026 гг.), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество вакансии по классификации должностей: Техники и механики по обслуживанию автомобилей, 75 900; Специалисты по механике автобусов и грузовиков и дизельным двигателям, 28 300 человек; Кузовные и смежные ремонтные мастерские, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы поощрения и права сотрудников определяются работодателем и доступны в определенных местах. Могут действовать особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем регионе.

15) Оплачиваемые производителем программы повышения квалификации проводятся UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI. Программы доступны в некоторых местах.

16) Не все программы аккредитованы ASE Education Foundation.

20) Пособия по программе VA могут быть доступны не во всех кампусах.

21) GI Bill® является зарегистрированным товарным знаком США.С. Департамент по делам ветеранов (ВА). Дополнительную информацию о льготах на образование, предлагаемых VA, можно найти на официальном сайте правительства США.

22) Грант Salute to Service предоставляется всем ветеранам, имеющим на это право, во всех кампусах. Программа Yellow Ribbon утверждена в наших кампусах в Эйвондейле, Далласе/Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников для работы в качестве автомехаников начального уровня.Выпускники, изучающие факультативы, посвященные NASCAR, также могут иметь возможность трудоустройства в отраслях, связанных с гонками. Из выпускников 2019 года, сдавших факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Ориентировочная средняя годовая заработная плата техников и механиков по обслуживанию автомобилей в Бюро статистики труда США по профессиональной занятости и заработной плате, май 2020 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.Достижения выпускников UTI могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату. Зарплата начального уровня ниже. Программы UTI готовят выпускников к карьере в отраслях, использующих предоставляемое обучение, в первую очередь в качестве автомобильных техников. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от техников, таких как сервисный писатель, инспектор смога и менеджер по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников и механиков по обслуживанию автомобилей в Содружестве Массачусетс (49-3023), составляет от 32 140 до 53 430 долларов США (Массачусетс Labour and Workforce Development, данные за май 2020 г., просмотрено 19 января 2022 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: оценка Министерства труда США почасовой оплаты средних 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2021 года, составляет 20 долларов.59. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасового заработка в Северной Каролине составляют 14,55 и 11,27 долларов соответственно. (Бюро статистики труда, Министерство труда США, профессиональная занятость и заработная плата, май 2020 г. Техники и механики автомобильного обслуживания, просмотрено 2 июня 2021 г.) Статистика занятости и заработной платы Бюро статистики труда США, май 2020 г.UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату. Достижения выпускников UTI могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату. Зарплата начального уровня ниже. Программы UTI готовят выпускников к карьере в отраслях, использующих предоставляемое обучение, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, таких как инспектор и контроль качества.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и сварщиками в Содружестве Массачусетса (51-4121), составляет от 36 160 до 50 810 долларов США (Развитие труда и рабочей силы штата Массачусетс, май Данные за 2020 г., просмотрено 19 января 2022 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: оценка Министерства труда США почасового заработка средних 50% квалифицированных сварщиков в Северной Каролине, опубликованная в мае 2021 года, составляет 20 долларов.28. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасового заработка в Северной Каролине составляют 16,97 и 14,24 доллара соответственно. (Бюро статистики труда, Департамент занятости и заработной платы Министерства труда США, май 2020 г. Welders, Cutters, Solderers, and Brazers, просмотрено 2 июня 2021 г.)

27) Не включает время, необходимое для прохождения квалификационной предварительной программы 18 недель плюс дополнительные 12 недель или 24 недели обучения для конкретного производителя, в зависимости от производителя.

28) Ориентировочная средняя годовая заработная плата специалистов по ремонту автомобильных кузовов и связанных с ними ремонтных мастерских согласно данным Бюро статистики труда США о занятости и заработной плате, май 2020 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Достижения выпускников UTI могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату. Зарплата начального уровня ниже.Программы UTI готовят выпускников к карьере в отраслях с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оценщик, оценщик и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве ремонтников автомобильных кузовов и связанных с ними автомобилей (49-3021) в Содружестве Массачусетс, составляет от 30 400 до 34 240 долларов США (Развитие труда и рабочей силы Массачусетса, данные за май 2020 г., просмотрено 19 января 2022 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: оценка Министерства труда США почасового заработка средних 50% квалифицированных техников по ДТП в Северной Каролине, опубликованная в мае 2021 года, составляет 23,40 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасового заработка в Северной Каролине составляют 17,94 и 13,99 долларов соответственно. (Бюро статистики труда, Министерство труда США, профессиональная занятость и заработная плата, май 2020 г.Automotive Body and Related Repairers, просмотрено 2 июня 2021 г.)

29) Ориентировочная средняя годовая заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в отчете Бюро статистики труда США о занятости и заработной плате, май 2020 г. UTI является образовательным учреждения и не может гарантировать трудоустройство или заработную плату. Достижения выпускников UTI могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату.Зарплата начального уровня ниже. Программы UTI готовят выпускников к карьере в отраслях, использующих предоставляемое обучение, в первую очередь в качестве техников-дизелистов. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от должности техника по дизельным грузовикам, например, техник по техническому обслуживанию, техник по локомотивам и техник по морским дизельным двигателям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков и специалистов по дизельным двигателям (49-3031) в штате Массачусетс, составляет от 32 360 до 94 400 долларов США (Massachusetts Labor and Workforce Development, Данные за 2020 г., просмотрено 19 января 2022 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: оценка Министерства труда США почасовой оплаты средних 50% квалифицированных дизельных техников в Северной Каролине, опубликованная в мае 2021 года, составляет 23,20 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасового заработка в Северной Каролине составляют 19,41 и 16,18 долларов соответственно. (Бюро статистики труда, Министерство труда США, профессиональная занятость и заработная плата, май 2020 г.Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотрено 2 июня 2021 г.)

30) Ориентировочная средняя годовая заработная плата механиков мотоциклов в отчете Бюро статистики труда США о занятости и заработной плате, май 2020 г. MMI является образовательным учреждением и не может гарантировать занятость или заработную плату. Достижения выпускников ММИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату.Зарплата начального уровня ниже. Программы MMI готовят выпускников к карьере в отраслях с использованием предоставляемого обучения, в первую очередь в качестве техников по мотоциклам. Некоторые выпускники MMI устраиваются на работу в рамках своей области обучения на должности, отличные от техников, например, автор услуг, техническое обслуживание оборудования и помощник по запчастям. Информация о заработной плате для Содружества Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетс, составляет 30 660 долларов США (Развитие труда и рабочей силы штата Массачусетс, данные за май 2020 г., просмотрено 19 января 2022 г., https://лми.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: оценка Министерства труда США почасовой оплаты средних 50% квалифицированных специалистов по ремонту мотоциклов в Северной Каролине, опубликованная в мае 2021 года, составляет 15,94 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасового заработка в Северной Каролине составляют 12,31 и 10,56 долларов соответственно. (Бюро статистики труда, Министерство труда США, профессиональная занятость и заработная плата, май 2020 г.Мотоциклетная механика, просмотрено 2 июня 2021 г.)

31) Ориентировочная средняя годовая заработная плата механиков по обслуживанию моторных лодок в отчете Бюро статистики труда США о занятости и заработной плате, май 2020 г. MMI является образовательным учреждением и не может гарантировать трудоустройство или зарплата. Достижения выпускников ММИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату.Зарплата начального уровня ниже. Программы MMI готовят выпускников к карьере в отраслях с использованием предоставляемого обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI устраиваются на работу в рамках своей области обучения на должности, отличные от техников, например, по обслуживанию оборудования, инспектору и помощнику по запчастям. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетс, составляет от 32 760 до 42 570 долларов США (Развитие труда и рабочей силы Массачусетса, данные за май 2020 г., просмотрено 19 января 2022 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: оценка Министерства труда США почасовой оплаты средних 50% квалифицированного морского техника в Северной Каролине, опубликованная в мае 2021 года, составляет 18,61 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасового заработка в Северной Каролине составляют 15,18 и 12,87 долларов соответственно. (Бюро статистики труда, Министерство труда США, профессиональная занятость и заработная плата, май 2020 г.Механики моторных лодок и техники по обслуживанию, просмотрено 2 июня 2021 г.)

33) Курсы различаются в зависимости от кампуса. Для получения подробной информации свяжитесь с представителем программы в кампусе, в котором вы заинтересованы.

34) Ориентировочная медианная годовая заработная плата операторов станков с числовым программным управлением в отчете Бюро статистики труда США о занятости и заработной плате, май 2020 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Достижения выпускников UTI могут различаться.Индивидуальные обстоятельства и заработная плата зависят от личных данных и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и их компенсационные программы влияют на заработную плату. Зарплата начального уровня ниже. Программы UTI готовят выпускников к карьере в отраслях с использованием предоставленного обучения, в первую очередь в качестве техников по обработке с ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от техников, таких как оператор станков с ЧПУ, ученик машиниста и инспектор по обработанным деталям.Информация о заработной плате для Содружества Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением по металлу и пластмассе (51-4011) в Содружестве Массачусетса, составляет 35 140 долларов США (Развитие труда и рабочей силы штата Массачусетс, май 2020 г.). данные, просмотрено 19 января 2022 г., https://lmi.dua.eol.mass.gov/lmi/OccupationalEmploymentAndWageSpecificOccupations#). Информация о заработной плате в Северной Каролине: оценка Министерства труда США почасовой оплаты средних 50% квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2021 года, составляет 20 долларов.24. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасового заработка в Северной Каролине составляют 16,56 и 13,97 долларов соответственно. (Бюро статистики труда, Министерство труда США, профессиональная занятость и заработная плата, май 2020 г. Операторы станков с числовым программным управлением, просмотрено 2 июня 2021 г.) Программа. Участвующие работодатели свяжутся с отобранными кандидатами для проведения собеседований.Решения о найме, удержании сотрудников и компенсации принимаются исключительно потенциальным работодателем. Участие работодателей и детали программы могут быть изменены. Для получения дополнительной информации, пожалуйста, свяжитесь с Career Services. UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату.

37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату. Для получения информации о результатах программы и другой раскрытой информации посетите сайт www.uti.edu/раскрытия.

38) Бюро статистики труда США прогнозирует, что общая занятость в стране по каждой из следующих профессий к 2030 году составит: Техники и механики автомобильного обслуживания, 705 900; Сварщики, резчики, паяльщики и паяльщики — 452 400 человек; Автобус и грузовик Специалисты по механике и дизельным двигателям — 296 800 человек; Кузовные и связанные с ними ремонтные мастерские — 161 800; и операторы станков с числовым программным управлением, 154 500 человек. См. Таблицу 1.2. Занятость по профессиям, 2020 г. и прогноз на 2030 г., США.S. Бюро статистики труда, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату. Обновлено 18 ноября 2021 г.

39) Повышение квалификации доступно для выпускников только при наличии курса и свободных мест. Студенты несут ответственность за любые другие расходы, такие как плата за лабораторные работы, связанные с курсом.

41) Бюро статистики труда США прогнозирует, что в период с 2020 по 2030 год для техников и механиков автомобильного обслуживания в среднем ежегодно будет открываться 69 000 вакансий.Вакансии включают вакансии в связи с чистыми изменениями занятости и чистыми заменами. См. таблицу 1.10 Профессиональные увольнения и вакансии, прогноз на 2020–2030 годы, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI — это образовательное учреждение. и не может гарантировать занятость или заработную плату. Обновлено 18 ноября 2021 г.

42) Бюро статистики труда США прогнозирует, что в период с 2020 по 2030 год в среднем ежегодно будет открываться 49 200 вакансий для сварщиков, резчиков, паяльников и сварщиков.Вакансии включают вакансии в связи с чистыми изменениями занятости и чистыми заменами. См. таблицу 1.10 Профессиональные увольнения и вакансии, прогноз на 2020–2030 годы, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI — это образовательное учреждение. и не может гарантировать занятость или заработную плату. Обновлено 18 ноября 2021 г.

43) По прогнозам Бюро статистики труда США, для механиков автобусов и грузовиков и специалистов по дизельным двигателям в период с 2020 по 2030 год ежегодно будет открываться в среднем 28 100 вакансий.Вакансии включают вакансии в связи с чистыми изменениями занятости и чистыми заменами. См. Таблицу 1.10. Увольнения по профессиям и вакансии, прогноз на 2020–2030 годы, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. учреждения и не может гарантировать трудоустройство или заработную плату. Обновлено 18 ноября 2021 г.

44) Бюро статистики труда США прогнозирует ежегодное открытие в среднем 15 200 вакансий в период с 2020 по 2030 год в сфере кузовного ремонта и связанных с ними ремонтных мастерских.Вакансии включают вакансии в связи с чистыми изменениями занятости и чистыми заменами. См. Таблицу 1.10. Профессиональные увольнения и вакансии, прогноз на 2020–2030 годы, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI — это образовательное учреждение. и не может гарантировать занятость или заработную плату. Обновлено 18 ноября 2021 г.

45) Согласно прогнозам Бюро статистики труда США, для операторов станков с числовым программным управлением в период с 2020 по 2030 год ежегодно будет открываться в среднем 16 500 вакансий.Вакансии включают вакансии в связи с чистыми изменениями занятости и чистыми заменами. Видеть Таблица 1.10. Увольнения по профессиям и вакансии, прогноз на 2020–2030 годы, Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. учреждения и не может гарантировать трудоустройство или заработную плату. Обновлено 18 ноября 2021 г.

46) Учащиеся должны поддерживать минимальный средний балл 3,5 и посещаемость 95%.

47) Бюро статистики труда США прогнозирует, что к 2030 году общая занятость техников и механиков автомобильного обслуживания в стране составит 705 900 человек.См. Таблицу 1.2. Занятость по роду занятий, 2020 г. и прогноз на 2030 г., Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату. Обновлено 18 ноября 2021 г.

48) Бюро статистики труда США прогнозирует, что к 2030 году общая занятость в стране для механиков автобусов и грузовых автомобилей и специалистов по дизельным двигателям составит 296 800 человек. У.S. Бюро статистики труда, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату. Обновлено 18 ноября 2021 г.

49) Бюро статистики труда США прогнозирует, что к 2030 г. общая занятость в автомобильных кузовных и смежных ремонтных мастерских составит 161 800 человек. Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.Обновлено в ноябре 18, 2021.

50) Бюро статистики труда США прогнозирует, что к 2030 году общая занятость сварщиков, резчиков, паяльщиков и сварщиков в стране составит 452 400 человек. Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Обновлено в ноябре 18, 2021.

51) Бюро статистики труда США прогнозирует, что к 2030 году общая занятость операторов станков с числовым программным управлением в стране составит 154 500 человек.См. Таблицу 1.2. Занятость по роду занятий, 2020 г. и прогноз на 2030 г., Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату. Обновлено 18 ноября 2021 г.

52) Бюро статистики труда США прогнозирует среднегодовое количество вакансий по стране в каждой из следующих профессий в период с 2020 по 2030 год: техников и механиков по обслуживанию автомобилей, 69 000; Механика автобусов и грузовиков и дизельный двигатель Специалисты — 28 100 человек; и сварщики, резчики, паяльщики и паяльщики — 49 200 человек.Вакансии включают вакансии в связи с чистыми изменениями занятости и чистыми заменами. См. Таблицу 1.10 Увольнения и вакансии, прогнозируемые на 2020–2030 годы, Бюро США. of Labor Statistics, www.bls.gov, просмотрено 18 ноября 2021 года. UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату. Утверждено 18 ноября 2021 г.

53) Бюро статистики труда США прогнозирует, что к 2030 г. общая занятость в стране по каждой из следующих профессий составит: Техники и механики по обслуживанию автомобилей — 705 900 человек; Сварщики, резчики, паяльщики и паяльщики — 452 400 человек; Автобус и грузовик Специалисты по механике и дизельным двигателям, 296 800 человек.См. Таблицу 1.2. Занятость по профессиям, 2020 г. и прогноз на 2030 г., Бюро статистики труда США, www.bls.gov, просмотрено 18 ноября 2021 г. UTI является учебным заведением и не может гарантировать трудоустройство или заработную плату. Обновлено 18 ноября 2021 г.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета высшего образования штата Иллинойс.

Тормозная система в автомобилях

Что такое тормоза?

Тормоза являются одним из важнейших компонентов автомобиля.Если вы говорите о производительности, это также включает в себя хорошие тормоза, потому что, если вы едете быстро, вам нужно такое же количество тормозной силы, чтобы снизить эту скорость.

Это механическое устройство , которое поглощает энергию движущейся системы . Он используется для замедления или остановки движущегося транспортного средства, что в основном достигается за счет трения.

Большинство современных автомобилей имеют тормоза на всех четырех колесах, управляемые гидравлической системой. Тормоза могут быть дискового или барабанного типа.

Передние тормоза играют большую роль в остановке автомобиля, чем задние, потому что при торможении вес автомобиля переносится на передние колеса.

Поэтому многие автомобили имеют передние дисковые тормоза, которые обычно более эффективны, а барабанные — сзади.

Полностью дисковые тормозные системы используются на некоторых дорогих или высокопроизводительных автомобилях, а полностью барабанные системы — на некоторых старых или небольших автомобилях.

Тормозная гидравлика

Гидравлический тормозной контур состоит из заполненных жидкостью главного и вспомогательных цилиндров, соединенных трубопроводами.

Главный и ведомый цилиндры

Главный цилиндр передает гидравлическое давление на ведомый цилиндр при нажатии педали.

Когда вы нажимаете на педаль тормоза, поршень в главном цилиндре давит, выталкивая жидкость по трубе.

Жидкость поступает в рабочие цилиндры на каждом колесе и заполняет их, вынуждая поршни выдвигаться для срабатывания тормозов.

Давление жидкости равномерно распределяется по системе.

Общая «толкающая» поверхность всех ведомых поршней намного больше, чем у поршня в главном цилиндре.

Следовательно, главный поршень должен пройти несколько дюймов, чтобы переместить подчиненные поршни на долю дюйма, необходимую для срабатывания тормозов.

Такое расположение позволяет прикладывать к тормозам большое усилие, аналогично тому, как рычаг с длинной ручкой может легко поднять тяжелый предмет на короткое расстояние.

Большинство современных автомобилей оснащены двойными гидравлическими контурами с двумя главными цилиндрами в тандеме на случай отказа одного из них.

Иногда один контур работает с передними тормозами, а другой — с задними тормозами, или каждый контур работает с обоими передними тормозами и одним из задних тормозов, или один контур работает со всеми четырьмя тормозами, а другой — только с передними.

При резком торможении с задних колес может сняться такой большой вес, что они заблокируются, что может привести к опасному заносу.

По этой причине задние тормоза намеренно сделаны менее мощными, чем передние.

В настоящее время большинство автомобилей также оснащены клапаном ограничения давления, чувствительным к нагрузке. Он закрывается, когда резкое торможение повышает гидравлическое давление до уровня, который может привести к блокировке задних тормозов и предотвратить дальнейшее движение жидкости к ним.

Современные автомобили могут даже иметь сложные антиблокировочные системы, которые различными способами определяют, как автомобиль замедляется и блокируются ли какие-либо колеса.

Такие системы включают и отпускают тормоза в быстрой последовательности, чтобы предотвратить их блокировку.

Тормоза с усилителем

Многие автомобили также оснащены усилителем для уменьшения усилия, необходимого для включения тормозов.

Обычно источником питания является разница давлений между частичным вакуумом во впускном коллекторе и наружным воздухом.

Вспомогательный сервоблок имеет трубное соединение с впускным коллектором.

Между педалью тормоза и главным цилиндром установлен сервопривод прямого действия.Педаль может воздействовать на главный цилиндр напрямую, если сервопривод неисправен или если двигатель не работает.

Некоторые автомобили имеют сервопривод непрямого действия, установленный в гидравлических линиях между главным цилиндром и тормозами. Такой блок можно установить в любом месте моторного отсека, а не прямо перед педалью.

Он также зависит от вакуума в коллекторе для обеспечения наддува. Нажатие на педаль тормоза вызывает повышение гидравлического давления в главном цилиндре, открывается клапан, который приводит в действие вакуумный сервопривод.

Как работает усилитель тормозов

Тормоз выключен – обе стороны диафрагмы находятся под вакуумом. Тормоз выключен – обе стороны диафрагмы находятся под вакуумом.

Дисковые тормоза

Базовый тип дискового тормоза с одной парой поршней. Может быть более одной пары или один поршень, управляющий обеими колодками, как ножничный механизм, через различные типы суппортов — качающийся или скользящий суппорт.

Жидкость под давлением попадает в тормозной суппорт, заставляя тормозные колодки двигаться внутрь к вращающемуся диску (который соединен с передними колесами).Когда тормозные колодки соприкасаются с диском, возникает трение, которое снижает скорость диска, что, в свою очередь, снижает скорость автомобиля и, в конечном итоге, останавливает ваш автомобиль.

Тормоз барабанный

Тормоз барабанный с ведущей и ведомой колодками, имеющий только один гидроцилиндр; тормоза с двумя ведущими колодками имеют по цилиндру на каждую колодку и установлены на передние колеса по полностью барабанной системе.

Жидкость под давлением теперь поступает в тормозной цилиндр внутри барабанных тормозов.Внутри этих цилиндров есть поршень, этот поршень движется наружу из-за тормозной жидкости под давлением внутри цилиндра. Это движение поршня наружу заставляет тормозные колодки двигаться к вращающемуся барабану. Когда эти тормозные колодки трутся о барабан, возникает трение, преобразующее кинетическую энергию в тепловую энергию и тем самым останавливающее ваше транспортное средство.

Барабанный тормоз имеет полый барабан, который вращается вместе с колесом. Его открытая задняя часть прикрыта неподвижным затыльником, на котором установлены две изогнутые колодки с фрикционными накладками.

Колодки выталкиваются наружу под действием гидравлического давления, перемещающего поршни в колесных цилиндрах тормоза, поэтому накладки прижимаются к внутренней части барабана, чтобы замедлить или остановить его.

При включенных тормозах колодки прижимаются поршнем к барабанам.

Каждая тормозная колодка имеет шарнир на одном конце и поршень на другом. Ведущий башмак имеет поршень на передней кромке по отношению к направлению вращения барабана.

Вращение барабана имеет тенденцию плотно прижимать переднюю колодку к ней, когда она соприкасается, улучшая тормозной эффект.

Некоторые барабаны имеют двойные ведущие башмаки, каждый со своим гидроцилиндром; у других есть одна передняя и одна задняя колодка с шарниром спереди.

Эта конструкция позволяет отталкивать две колодки друг от друга с помощью одного цилиндра с поршнем на каждом конце.

Она проще, но менее мощная, чем система с двумя ведущими колодками, и обычно ограничивается задними тормозами.

В обоих типах возвратные пружины немного оттягивают колодки назад при отпускании тормозов.

Ход башмака максимально сокращается с помощью регулятора. Старые системы имеют ручные регуляторы, которые необходимо время от времени поворачивать по мере износа фрикционных накладок. Более поздние тормоза имеют автоматическую регулировку с помощью храповика.

Барабанные тормоза могут изнашиваться, если их многократно применять в течение короткого времени – они нагреваются и теряют эффективность, пока снова не остынут. Диски с их более открытой конструкцией менее подвержены выцветанию.

Ручной тормоз

Механизм ручного тормоза

Ручной тормоз воздействует на колодки посредством механической системы, отдельной от гидроцилиндра, состоящей из рычага и рычага в тормозном барабане; они управляются тросом от рычага ручного тормоза внутри автомобиля.

Помимо гидравлической тормозной системы, все автомобили имеют механический ручной тормоз, действующий на два колеса – обычно задние.

Ручной тормоз обеспечивает ограниченное торможение при полном отказе гидравлической системы, но его основное назначение — стояночный тормоз.

Рычаг ручного тормоза натягивает трос или пару тросов, соединенных с тормозами с помощью набора меньших рычагов, шкивов и направляющих, детали которых сильно различаются от автомобиля к автомобилю.

Храповой механизм на рычаге стояночного тормоза удерживает тормоз после его включения.Кнопка расцепляет храповик и освобождает рычаг.

На барабанных тормозах система ручного тормоза прижимает тормозные колодки к барабанам.

Компоненты, используемые в тормозной системе:

  • Педаль тормоза: Расположена в центре педали акселератора и сцепления. Тормозная система активируется только после нажатия на эту педаль.
  • Резервуар для жидкости:  Это тормозная жидкость или тормозное масло, которое используется в тормозной системе.
  • Жидкостные магистрали:  Это трубы, по которым тормозная жидкость течет в автомобиле.
  • Тормозные колодки:  Стальные опорные пластины, используемые в дисковых тормозах. Обычно он изготавливается из керамики, металла или других износостойких композитных материалов.
  • Тормозные колодки:  2 сваренных вместе куска листовой стали, несущие тормозную накладку.
  • Тормозной барабан: Это вращающийся компонент в форме барабана, используемый в барабанных тормозах.
  • Ротор:  Это чугунный тормозной диск, соединенный с колесом и/или осью, иногда сделанный из армированного углерод-углерода, керамической матрицы или другого композита.
  • Тормозная накладка:  Это термостойкий, мягкий, но прочный материал с высокими характеристиками трения, размещенный внутри тормозной колодки.
  • Поршень:  Это подвижный компонент, содержащийся в цилиндре.
  • Суппорт:  Устройство, на котором устанавливаются тормозные колодки и поршни
  • Плавающие суппорты/Скользящий суппорт:  Он перемещается относительно ротора; использует поршень на одной стороне диска, чтобы вдавить внутреннюю тормозную колодку в тормозную поверхность, прежде чем втянуть корпус суппорта, чтобы оказать давление на противоположную сторону диска.
  • Фиксированные суппорты:  Он не перемещается относительно ротора и чувствителен к дефектам; он использует одну или несколько одиночных пар противоположных поршней для зажима с каждой стороны ротора.
  • Главный цилиндр:  Устройство, которое преобразует негидравлическое давление вашей ноги в гидравлическое давление и управляет подчиненными цилиндрами на противоположном конце гидравлической системы.
  • Вакуумный усилитель: Компонент, используемый для улучшения главного цилиндра и увеличения давления от ноги водителя за счет использования вакуума во впускном отверстии двигателя; действует только при работающем двигателе автомобиля.

Когда водитель нажимает на педаль тормоза, создается усилие, усиливаемое вакуумом двигателя. Этот эффект усиления заставляет тормоза реагировать быстрее.

Эта сила от вакуумного усилителя толкает поршень внутри главного цилиндра против усилия пружины, заставляя тормозную жидкость течь под давлением. Эта жидкость под давлением достигает тормозного суппорта (дисковые тормоза) и тормозного цилиндра (барабанные тормоза) по жидкостным трубопроводам.

В чем разница между тормозом и тормозной системой?

Думайте о тормозной системе как о стиле торможения.Это метод, лежащий в основе фактической механики. Фактические тормоза описывают механическое оборудование, используемое для осуществления метода. В этой статье мы рассмотрим и то, и другое, так как важно быть знакомым как с тормозом, так и с его системой.

Типы тормозных систем

  • Электромагнитная тормозная система Электромагнитные тормозные системы можно найти во многих новых и гибридных автомобилях. Электромагнитные тормоза останавливают автомобиль с помощью электродвигателя. Электромагнитные тормоза становятся популярными в настоящее время.В нем используется электродвигатель, встроенный в автомобиль, который помогает автомобилю остановиться. Он в основном встречается в гибридных и электрических автомобилях и использует электродвигатель для зарядки аккумуляторов и рекуперативных тормозов.
  • Фрикционная тормозная система Это традиционная тормозная система, обычно используемая в большинстве автомобилей. Это рабочие тормоза, которые обычно бывают двух видов; Колодки (диск) и обувь (барабаны). Как следует из названия, эти тормоза используют трение, чтобы остановить движение автомобиля.Колодки расположены сверху диска, который вращается вместе с передним колесом, а колодки расположены внутри барабана, который вращается вместе с задним колесом. Колодки сомкнутся с диском и остановят автомобиль, а колодки растянутся и начнут тереться о барабан, чтобы остановить автомобиль.
  • Гидравлическая тормозная система Гидравлическая тормозная система состоит из главного цилиндра, который питается от резервуара с гидравлической тормозной жидкостью. Это связано с набором металлических труб и резиновых фитингов, которые крепятся к цилиндрам колес.Колеса содержат два противоположных поршня, которые расположены на ленточных или барабанных тормозах, давление которых раздвигает поршни, заставляя тормозные колодки входить в цилиндры, что приводит к остановке колеса. Эта система работает с тормозной жидкостью, цилиндрами и трением. Создавая давление в системе, тормозные колодки останавливают движение колес.
  • Тормозная система с сервоприводом: Также известна как вакуумное торможение или торможение с помощью вакуума. В этой системе усилие, оказываемое водителем на педаль, увеличивается.
  • Механическая тормозная система:  Эта система приводит в действие ручной или аварийный тормоз. Тормоза приводятся в действие механическими рычагами.

Типы тормозов

Тормоза, о которых вы, вероятно, думаете, когда слышите это слово, являются рабочими тормозами. Это тормоза, которые физически останавливают движение вашего автомобиля, и они бывают двух типов: дисковые тормоза и барабанные тормоза. Каждый автомобиль имеет два передних тормоза и два задних тормоза. У большинства будут либо все четыре дисковых тормоза, либо дисковые тормоза спереди и барабанные сзади.

  • Дисковые тормоза: Дисковые тормоза состоят из ротора дискового тормоза, суппорта и тормозных колодок. Когда давление подается через гидравлическую систему, тормозные колодки прижимаются к тормозному диску, что приводит к остановке автомобиля.
  • Барабанные тормоза: Основными частями барабанной тормозной системы являются тормозной барабан, тормозные колодки, колесный цилиндр и тормозные пружины. Тормозные колодки находятся внутри тормозного барабана, и когда к колесному цилиндру прикладывается давление, тормозные колодки прижимаются к барабану, что приводит к остановке автомобиля.Тормозные пружины уменьшают сопротивление, оттягивая тормозные колодки от барабана, когда вы убираете ногу с педали тормоза.

Что такое антиблокировочная система тормозов?

Не все согласны с тем, является ли антиблокировочная система типом тормоза, тормозной системой или просто функцией безопасности, которая делает процесс резкого торможения более плавным для вашего автомобиля. Большинство новых автомобилей оснащены антиблокировочной тормозной системой (ABS), которая предотвращает блокировку колес при резком торможении водителем.Это помогает уменьшить общее количество остановок и облегчает управление, предотвращая занос, особенно во влажных условиях.

Тормозная система – обзор

Объясняется и обсуждается роль испытаний в разработке и проверке тормозов и тормозных систем для современных дорожных транспортных средств. Существует постоянная тенденция отхода от экспериментальных испытаний, особенно тех, которые связаны с дорожными или трековыми испытаниями реальных транспортных средств, из-за сложности, затрат и времени, к компьютерному моделированию и «виртуальным» испытаниям.Тем не менее, экспериментальные испытания необходимы для проверки конструкции и получения точных данных для прогнозирования конструкции.

Экспериментальные испытания тормозов можно проводить на реальных транспортных средствах на испытательных полигонах и в лабораторных условиях, например на динамометрическом стенде «катящаяся дорога». Транспортные средства также могут быть настроены для записи «реальных» пользовательских данных на дорогах общего пользования, при условии, что любые модификации транспортных средств не опасны и не противоречат требованиям законодательства, приборы и сбор данных не мешают водителю управлять автомобилем. транспортное средство, и транспортное средство управляется безопасно.Все виды испытаний тормозов потенциально опасны и опасны, и вводятся некоторые основные правила техники безопасности.

Объяснены параметры, которые можно измерить при экспериментальных испытаниях тормозов, и кратко описаны примеры типов контрольно-измерительных приборов и датчиков, используемых для измерения этих параметров. Объясняется сбор данных и регистрация данных.

Перед началом любой программы испытаний важно определить и согласовать цель экспериментальных испытаний тормозов.Некоторые аспекты экспериментального планирования испытаний тормозов объясняются в контексте граничной диаграммы и «p-диаграммы», а также вводятся процедуры экспериментальных испытаний тормозов. Подчеркивается важность стандартизации испытательного оборудования и процедур у разных производителей и в разных странах, чтобы можно было добиться согласованности характеристик тормозной системы.

Описаны и объяснены различные типы оборудования для проверки тормозов, включая автомобили, динамометры и испытательные стенды.Рассмотрены преимущества и недостатки каждого из них, от «парковых» испытаний легковых автомобилей до испытаний «производительности» или «эффективности» на динамометрах до испытаний «малой выборки» на фрикционных стендах. Обсуждается изменчивость, которая всегда присутствует в любой форме испытаний транспортных средств, и обсуждаются способы либо уменьшить величину изменчивости за счет хорошего определения испытаний, подготовки и контроля, либо учитывать изменчивость в последующей интерпретации и анализе данных.

Подчеркнута важность подготовки тормозной пары трения посредством процессов приработки и полировки, а также объяснена процедура достижения приработки.Другие важные подготовительные мероприятия включают в себя проверку испытательной установки, подтверждение приведения в действие и управления тормозом, меры по охране труда и технике безопасности, включая оценку рисков, проверку и калибровку всех датчиков, преобразователей и контрольно-измерительных приборов, а также подтверждение правильного функционирования оборудования для обработки сигналов и регистрации данных, а также многие процедуры испытания тормозов включают «проверку приборов» на начальных этапах для этих целей.

Описана и обсуждена общая процедура проверки эффективности тормозов для реальных автомобилей, а также представлены некоторые примеры данных.Кратко обсуждается ускоренное испытание на износ. Обсуждаются стандартные процедуры испытаний тормозов с использованием в качестве примеров процедур автомобильной промышленности, которые в настоящее время приняты во многих странах мира. Эти примеры охватывают тормозные системы легковых автомобилей (гидравлические) и тормозные системы грузовых автомобилей (пневматические) и относятся к фактическим испытаниям транспортных средств и испытаниям на инерционном динамометрическом стенде.

Поскольку фрикционные материалы обычно теряют эффективность при повышении температуры и восстанавливают ее при остывании тормоза, важны процедуры испытаний на выцветание для оценки эффективности тормозов при повышении температуры.В этом типе испытаний могут использоваться повторяющиеся «рывковые» приложения или «торможение» через определенные промежутки времени, которые нагревают тормоз. После испытания на исчезновение испытание на «восстановление» направлено на определение того, насколько быстро материал может «восстановиться» до исходных характеристик в серии (обычно) более легких применений тормозов через определенные промежутки времени, которые позволяют тормозу остыть. Испытание на выцветание автомобиля включает в себя повторяющиеся нажатия на педаль тормоза на высокой скорости без значительного охлаждения тормозов в промежутках между ними, тем самым максимизируя тепловую нагрузку на тормоза.Испытание может быть выполнено в течение заданного временного цикла, или время цикла может определяться характеристикой ускорения транспортного средства. Этот последний тип теста обычно задействует тормоза для создания максимального замедления без вмешательства ABS и является чрезвычайно суровым.

Кратко обсуждаются интерпретация и анализ данных испытаний тормозов.

Автомобильная тормозная система: определение, функции, работа

Автомобильная система была бы орудием убийства, если бы не разработанная для нее тормозная система.Тормозные системы существуют с момента создания первого автомобиля. Система тормозит движение, поглощая энергию движущейся системы.

За прошедшие годы развитие технологий привело к появлению различных конструкций, типов и тормозных систем для транспортных средств. Дело в том, что они неизбежны на транспортных средствах. Что ж, компоненты тормозной системы различаются в зависимости от модели и типа, но на самом деле они служат одной цели и имеют один и тот же принцип работы. Тормозная система может быть спроектирована для любого механического устройства, в котором происходит движение, а не только для автомобилей.Система должна соответствовать некоторым требованиям, которые будут объяснены в этой статье. Некоторые рабочие характеристики должны быть достигнуты, особенно на высокопроизводительных транспортных средствах, потому что теперь они предназначены для очень быстрой езды. Для снижения скорости и остановки транспортных средств требуется огромное количество энергии или тормозной силы.

Сегодня вы познакомитесь с определением, функциями, компонентами, схемой, применением, характеристиками, типами, принципами работы тормозной системы в автомобильном устройстве.

Подробнее: Сверлильный станок с механической и ручной подачей

Что такое тормозная система?

Тормоз представляет собой механическое устройство, предназначенное для сдерживания движения путем поглощения энергии движущейся системы, обычно за счет трения. Он используется для замедления или остановки движущегося транспортного средства, колес, оси и т. д. Тормозная система представляет собой сложное устройство, состоящее из множества частей, но ее работа кажется очень простой. В конце концов, нажатие одной педали активирует все тормоза на четырех колесах. Замедление достигается за счет гидравлической жидкости, которую часто прокачивают, чтобы получить наилучшие характеристики торможения.В системе не должно быть воздуха, иначе компонент не будет работать должным образом.

Большинство тормозов предназначены для использования трения между двумя поверхностями, они нажимаются для преобразования кинетической энергии движущегося объекта в тепло. Хотя в настоящее время используется несколько методов преобразования энергии. В автомобиле фрикционные тормоза накапливают тепло торможения в барабанном или дисковом тормозе, которое затем постепенно преобразуется в воздух.

На современных автомобилях педаль тормоза прижата к главному цилиндру.Есть поршень, который прижимает тормозную колодку к тормозному диску, что замедляет колесо. На тормозном барабане цилиндр прижимает тормозные колодки к барабану, чтобы замедлить колесо.

Функции автомобильной тормозной системы

Ниже приведены функции тормозной системы, используемые в автомобильном двигателе:

  • Тормозная система помогает останавливать транспортные средства на минимально возможном расстоянии. Это достигается путем преобразования кинетической энергии транспортного средства в тепловую энергию.
  • Он также работает на механическом устройстве, где происходит движение, тормоз применяется для его остановки в течение короткого периода времени.

Подробнее: Что нужно знать об автомобильных радиаторах

Компоненты тормозной системы

Ниже перечислены компоненты, используемые в автомобильной тормозной системе:

Педаль тормоза: компонент тормозной системы, используемый для приведения в действие тормоза путем нажатия ногой. Он расположен посередине педали акселератора и сцепления внутри автомобиля.

Резервуар для жидкости: Резервуар для жидкости представляет собой корпус, в котором хранится тормозная жидкость или тормозное масло.

Жидкостные магистрали: Жидкостные магистрали — это трубы, по которым тормозная жидкость течет в автомобиле.

Тормозные колодки: Тормозная колодка представляет собой стальную опорную пластину, используемую в дисковых тормозах. Он часто изготавливается из керамики, металла или других износостойких композитных материалов.

Тормозные колодки: Тормозные колодки представляют собой два куска листовой стали, соединенные вместе, чтобы на них можно было крепить тормозные колодки.

Тормозной барабан: Тормозной барабан представляет собой вращающийся компонент в форме барабана, используемый в барабанной тормозной системе.

Ротор: Ротор представляет собой чугунный тормозной диск, соединенный с колесом или осью, иногда сделанный из армированного углерод-углерода, керамической матрицы или какого-либо другого композита.

Тормозная накладка: Тормозная накладка представляет собой термостойкий, мягкий, но в то же время прочный материал с высокими характеристиками трения. Он заключен внутри тормозной колодки.

Подробнее: Все, что вам нужно знать о фрезерном станке

Схема автомобильной тормозной системы:

Поршень: Поршень представляет собой подвижный компонент, содержащийся в цилиндре.

Суппорт: Суппорт несет тормозные колодки и поршни.

Плавающий суппорт или скользящий суппорт: деталь движется относительно ротора, поскольку в ней используется поршень на одной стороне диска для прижимания внутренней тормозной колодки к тормозной поверхности. Затем он втягивает корпус суппорта, оказывая давление на противоположную сторону диска.

Фиксированные суппорты: фиксированный суппорт не перемещается относительно ротора, который работает чувствительно к дефектам.Он использует одну или несколько одиночных пар противоположных поршней для зажима с каждой стороны ротора.

Главный цилиндр: главный цилиндр преобразует негидравлическое давление от ноги водителя в гидравлическое давление. затем он управляет рабочими цилиндрами на противоположном конце гидравлической системы.

Вакуумный усилитель : этот компонент тормозной системы используется для улучшения главного цилиндра и увеличения давления, которое подается на ногу водителя за счет использования вакуума во впуске двигателя.Это эффективно при работающем двигателе автомобиля.

Характеристики

Характеристики тормозной системы включают пиковое усилие, постоянное рассеивание мощности, затухание, плавность хода, мощность, ощущение педали, сопротивление, долговечность, вес и шум. Некоторые другие факторы, которые перечислены, могут рассматриваться как характеристика тормозной системы. Продолжайте читать, чтобы познакомиться с ними.

Типы тормозной системы

Ниже приведены различные типы торможения, используемые в автомобильных устройствах:

Электромагнитная тормозная система

Это одна из прогрессивных конструкций тормозной системы, в ней используется электродвигатель, установленный в автомобиле.Мотор помогает остановить транспортное средство. Типы электромагнитных тормозных систем используются в большинстве гибридных автомобилей, где электродвигатель заряжает батареи и приводит в действие тормоза. В некоторых автобусах используется вторичный тормоз-замедлитель, в котором используется внутреннее короткое замыкание и генератор.

Фрикционная тормозная система

В автомобилях широко распространены тормозные системы фрикционного типа. Их конструкция сложна, но удобна в эксплуатации и обычно доступна в двух формах; колодки и обувь. Как и в названии, трение используется в тормозной системе, чтобы остановить движение транспортного средства или устройства.В его состав входят вращающееся устройство со стационарной площадкой и вращающаяся погодная поверхность. Ленточные тормоза содержали башмаки, которые сжимали вращающийся барабан снаружи и трулись о него. В качестве альтернативы барабанный тормоз с колодками вращается и расширяется, трутся о внутреннюю часть барабана.

Гидравлическая тормозная система

Типы гидравлических тормозных систем состоят из главных цилиндров, которые получают гидравлическую тормозную жидкость из резервуара. Через соединения различных металлических труб и резиновых фитингов система крепится к цилиндрам колеса.Колесо имеет два противоположных поршня, расположенных на ленточных или барабанных тормозах. Давление раздвигает поршень, заставляя тормозные колодки входить в цилиндры, что приводит к остановке колеса.

Подробнее: Система мокрого и сухого масляного картера

Пневматическая тормозная система:

Типы пневматических тормозных систем обычно используются в тяжелых транспортных средствах, таких как грузовики, автобусы и т. д. Как и в других типах, педаль тормоза нажата. Однако воздух из атмосферы поступает в компрессор через воздушный фильтр в ресивер через разгрузочный патрубок.Далее он поступает в тормозную камеру через тормозной клапан, который предназначен для контроля интенсивности торможения. Это приводит к торможению.

схема барабанных и дисковых тормозов:

Некоторые другие типы тормозных систем включают:

Стопорная и аварийная тормозная система:

Стояночный и аварийный типы тормозных систем работают с рычагами и тросами при механическом принудительном управлении. Хотя на новых автомобилях он управляется с помощью кнопки, чтобы остановить автомобиль в случае чрезвычайной ситуации или при парковке на холме.Система может обойти обычную тормозную систему, когда она неисправна.

При включении тормоза трос натягивается и проходит к промежуточному рычагу, что вызывает увеличение усилия и передачу его на уравнитель. Эквалайзер разделяется на два троса, распределяет усилие и направляет его на задние колеса, способствуя замедлению и остановке автомобиля.

Тормозная система обходит другие тормозные системы, напрямую управляя тормозными колодками. Система полезна, если типичная тормозная система выходит из строя.

Усилитель тормозной системы:

Тормозные системы с сервоприводом сегодня можно найти на большинстве автомобилей. Они предназначены для увеличения давления, которое водитель прикладывает к педали тормоза. Система использует вакуум во впускном коллекторе для создания дополнительного давления, необходимого для срабатывания тормоза. Кроме того, эти системы работают только при работающем двигателе. В некоторые конструкции транспортных средств входит больше, чем тормозная система, поскольку они работают в унисон, чтобы предложить более мощную и надежную систему.Однако система иногда выходит из строя из-за комбинации типов тормозов, что может привести к автомобильным авариям.

Прокачка тормозной системы:

Типы тормозных систем применяются на автомобилях, когда в конструкцию входит насос. Он используется в поршневом двигателе внутреннего сгорания для прекращения подачи топлива, что, в свою очередь, приводит к потере внутренней накачки в двигателе, вызывая торможение.

Подробнее: Типы слоттеров и их характеристики

Принцип работы

Работа тормозной системы довольно сложна, но с объяснением ее компонентов и типов я уверен, что вы знакомы с используемыми терминами.Там два вида тормозных систем; дисковый тормоз и барабанный тормоз. Дисковые тормоза используются на передних колесах автомобилей, в то время как барабанные тормоза устанавливаются на задние колеса. Хотя некоторые современные автомобили высокого класса имеют дисковые тормоза на четырех колесах.

Водитель нажимает на педаль тормоза, создавая усилие, которое затем усиливается за счет разрежения двигателя. Усиление позволяет тормозам реагировать быстрее и эффективнее.

Сила вакуумного усилителя толкает поршень внутри главного цилиндра к пружине.Это заставляет тормозную жидкость течь под давлением. эта жидкость под давлением достигает тормозного суппорта (дисковые тормоза) и тормозного цилиндра (барабанные тормоза) по трубопроводам.

Посмотрите видео, чтобы увидеть практическую работу автомобильной тормозной системы:

В заключение, тормозная система в автомобилях очень важна и необходима, поскольку она предотвращает движение устройства, когда это необходимо. В этой статье мы рассмотрели различные аспекты тормозной системы, объяснив ее функции и компоненты.Мы узнали, что систему можно спроектировать на основе механической системы, в которой происходит движение. Также выявлены различные типы тормозной системы, а также ее работа.

Подробнее: Операции, которые можно выполнять на шлифовальном станке

Надеюсь, вам понравилось чтение, если да, пожалуйста, прокомментируйте, поделитесь и порекомендуйте этот сайт другим студентам технических специальностей. Спасибо!

 

 

Международная система единиц (СИ)

Характеристики тормозов

 

Тормоза безусловно, являются наиболее важным механизмом (системой) на любом транспортном средстве, поскольку безопасность и жизнь тех, кто находится в транспортном средстве, зависят от правильной эксплуатации тормозная система.Было подсчитано, что тормоза на среднем транспортном средстве применяются 50 000 раз в год.

«Тормоза остановить колеса, а не транспортные средства». Этот основной факт означает, что лучшие тормоза в Только в мире остановите вращение шины/колеса в сборе. это трения между шина и дорожное покрытие, которые обеспечивают остановку или замедление движения транспортное средство.

 

Тормоза теория:

Тормоза преобразует кинетическую энергию транспортного средства (KE) в тепловую энергию (HE).Где кинетический Энергия автомобиля зависит от массы автомобиля и скорости.

 

                                   KE = ½ м v 2

где:

            м = масса автомобиля [кг]

            v = скорость автомобиля [м/с]

 

Тормоз системы

Легковой автомобиль тормозные системы можно классифицировать по следующим критериям:

A- Концепции дизайна и

Б- Принципы работы.

 

А- Концепции дизайна

на основе Согласно официальным правилам, функции автомобильного тормозного оборудования могут быть разделен на три тормозные системы:

— рабочая тормозная система (базовые тормоза или фундаментные тормоза)

— вспомогательная тормозная система и

— стояночно-тормозная система.

 

Рабочий тормоз система

рабочие тормоза (педальный тормоз) могут быть использованы для снижения скорости транспортного средства, чтобы поддерживать его на постоянном уровне (например, на градиенте) и доводить до к остановке.Это система, используемая в ходе нормальной работы. Это обеспечивает точно контролируемую переменную реакцию торможения на всех четырех колесах.

 

Вторичный тормоз система

В В случае выхода из строя рабочих тормозов вспомогательная тормозная система должна быть способен взять на себя свои функции, хотя и может генерировать лишь уменьшенную тормозная сила. Вторичная (или вспомогательная) тормозная система не обязательно состоять из отдельной третьей системы (дополняющей сервисную и парковочную тормоза) с собственным механизмом управления; он также может включать неповрежденную цепь в двухконтурной схеме рабочего тормоза или стояночного тормоза, способного градуированный ответ.

 

 

 

Стояночный тормоз система

стояночная (ручная) тормозная система берет на себя третью функцию торможения. Это должно быть способен удерживать автомобиль в стационарном состоянии даже на уклонах и в отсутствие водителя. Из соображений безопасности необходимо, чтобы система стояночного тормоза непрерывная механическая связь между механизмом управления и колесом тормоз, т.г., соединительные стержни или трос Боудена. Стояночный тормоз приводится в действие с сиденье водителя, в большинстве случаев с помощью ручного рычага, в других — с помощью педали. Эта тормозная система предназначена для обеспечения ступенчатой ​​реакции. Он действует на колеса только на одной оси.

 

Б- Принципы работы

В зависимости от того, срабатывает ли тормозная система полностью, частично или не срабатывает вообще по

мускулистый энергия, проводится различие между:

— системы мышечно-энергетического торможения,

— тормозные системы с усилителем и

— силовые тормозные системы.

 

Мышечная энергия тормозные системы

Это тип системы устанавливается в легковых автомобилях и двухколесных транспортных средствах. То мышечное усилие, прилагаемое к педали или ручному рычагу, передается на тормоза с помощью механического (рычажные тяги или трос Боудена) или гидравлического (главный цилиндр, колесные цилиндры) релейная система.

 

С усилителем тормозные системы

Тормозная система с усилителем (усилителем) встречается в легковых автомобилях и легкие коммерческие автомобили.В этом типе устройства используется усилитель тормозов (сервопривод). единица) для дополнения мышечной силы энергией, генерируемой вакуумом или гидравлическим давление. Затем гидравлический контур передает эту усиленную мышечную силу на колесные цилиндры.

 

Силовой тормоз системы

Основная область применения этой безмышечной тормозной системы находится в тяжелые коммерческие автомобили, но этот тип системы также иногда встречается в больших легковых автомобилях со встроенной антиблокировочной системой тормозов (ABS).С участием В этой системе усилие, используемое для приведения в действие рабочих тормозов, полностью не мускулистый.

 

Тормозная цепь конфигурации

Юридический правила определяют двухконтурное передающее устройство как обязательное. Из пяти варианты, определенные в DIN 74000, две версии (II и X) стали стандартными.

Кому обеспечить соблюдение правовых норм, регулирующих вторичные тормозные силы, переднетяжелые автомобили оснащены диагональной (X-образной) тормозной системой; в В этой компоновке каждый тормозной контур управляет одним передним колесом и одним задним. колесо с противоположной стороны.

А система с раздельными контурами для передней и задней осей (схема II) особенно хорошо подходит для использования на транспортных средствах с задней и средней грузоподъемностью и большегрузные коммерческие автомобили. Остальные конфигурации (HT, LL, HH) менее удовлетворительны с точки зрения безопасности. Как результат, первые две версии (II и X) используются практически для всех Приложения.

                      

  Тормозная система em Компоненты

 

 

Тормоз Педаль: Увеличьте давление стопы с помощью простого механического рычага.

 

Бустер (тормозная система с усилителем):

1- Вакуумный усилитель : Относительно большой металлический камерный узел устанавливается между брандмауэром (переборкой) и мастером цилиндр. Использует вакуум для создания дополнительной силы в главном цилиндре, процесс остановки проще на драйвере

2- Гидравлический усилитель : Усилитель тормозов, использующий давление гидравлической жидкости для обеспечения тормозного помощника.

А- Гидроусилитель: также называется гидроусилителем II, гидроусилителем Hydra или гидроусилителем Bendix. Гидравлический усилитель агрегат, работающий от насоса гидроусилителя руля автомобиля.

B-Мастер питания: Иногда называется электрогидравлическим усилителем. Тормозной блок с гидравлическим усилителем, установленный на некоторых автомобилях General Motor середины 1980-х годов. Использует давление, создаваемое гидравлический с электроприводом насос.

 

Мастер цилиндр : устройство тормозной системы, которое хранит жидкость и обеспечивает давление для управления другими гидравлическими компонентами.

 

Тормоз линии : Стальные гидравлические трубопроводы, соединяющие стационарные части гидравлической системы тормозов.

 

Шланги : Гидравлические трубопроводы из резиновой оплетки, которые соединяются с деталями тормозной системы. которые движутся в отношение друг к другу.

 

Многоконтурный тормозная система: Многоконтурная тормозная система воплощает в себе конструкцию, в которой силы передаются по двум или более контурам.

 

Тормоз жидкость : Специальная жидкость, используемая в гидравлических тормозных системах. Это должно отвечают строгим спецификациям, таким как устойчивость к нагреванию, замораживанию и загустению.

 

Колесо цилиндр : Гидравлическое устройство, используемое в барабанных тормозах для изменения гидравлического давления. из главного цилиндра в механическую силу, воздействующую на тормозные колодки. против вращающегося барабана.

 

Диск тормозной суппорт : Чугунный или алюминиевый цилиндр и поршень в сборе, используемые для получать, содержать и преобразовать гидравлическое давление главного цилиндра в механическое усилие, тормозные колодки.

 

Диск Тормоз : Тормозной узел, в котором используется гидравлический суппорт для приведения в действие тормозных колодок. против металлического ротора. Используется как для передних, так и для задних тормозов.

 

Барабан тормоз : (внутренние расширяющиеся тормоза). Это тормозная система, в которой используется колесо цилиндр для прижатия двух тормозных колодок к вращающемуся барабану. Используется преимущественно как задние тормоза.

 

Парковка тормоз : Ручной или ножной тормоз, предотвращающий движение транспортного средства. во время стоянки приведение в действие задних тормозов.

 

Парковка тормозной трос : Многожильный стальной трос, используемый для включения стояночного тормоза. Толщина кабеля обычно составляет около 3/16 (4,76 мм).

 

Тормозное давление регулирующие клапаны:

1- Дозирующий клапан: используется для удержания передних тормозов от применение перед задними тормозами.

2- Пропорциональный клапан: Гидравлический клапан, используемый для уравнять давление в системе между

          передние и задние тормоза для предотвращения блокировки, установленной в задней тормозной магистрали.

 

Антиблокировочная тормозная система (ABS): Система с компьютерным управлением, входящая в базовую комплектацию тормозная система. Система «циклически» включает и выключает тормоза, чтобы предотвратить блокировка и занос.

 

Силовой тормоз система : Тормозная система, в которой энергия требуется для создания тормозного усилия обеспечивается одним или несколькими устройствами, создающими силу, полностью независимую от физическое усилие водителя (пневматическая тормозная система).

 

Ретардеры (непрерывный или без трения) : как и фрикционные тормоза, могут использоваться для уменьшения скорость автомобиля; однако они отличаются тем, что на самом деле не подходят остановка транспортного средства. Ретардер подходит для использования на протяженных уклонах.

1- Горный тормоз (моторный тормоз)

2- Гидродинамический замедлитель

3- Электродинамический замедлитель (вихретоковый тормоз)

 

Автоматический тормозная система : Автоматическая тормозная система состоит из всех этих элементов которые автоматически прикладывают тормозное усилие к колесам прицепа в случае умышленного или случайное отделение от буксирующего автомобиля.

1- Клапан управления прицепом

2- Инерционная (обгонная) тормозная система

3- Гравитационная тормозная система.

 

Тормоз операция:

Большинство автомобили, построенные с конца 1920-х годов, используют тормоз на каждом колесе. Чтобы остановить колесо, водитель оказывает усилие на педаль тормоза. Усилие на педали тормоза давление тормозной жидкости в главном цилиндре. Эта гидравлическая сила (жидкость под давлением) передается по стальным трубопроводам в колесный цилиндр или суппорт на каждом колесе.Гидравлическое давление на каждый колесный цилиндр или суппорт используется для прижатия фрикционных материалов к тормозному барабану или ротору. Трение между неподвижным фрикционным материалом и вращающимся барабаном или ротором (диском) заставляет вращающуюся часть замедляться и в конечном итоге останавливаться. Так как колеса прикрепленные к барабанам или роторам, колеса транспортных средств также останавливаются.

 

Анализ тормозных усилий

Механический Преимущество (отношение рычага педали) {MA}:

Бустер Характеристики {B}:

Гидравлическое преимущество {HA}:

Коэффициент торможения {BF}:

Тормозное усилие {F b }:

Назначение тормозов:

Тормоз системы выдают следующее:

— уменьшить скорость транспортного средства и привести движущееся транспортное средство остановиться,

— поддержание постоянной скорости автомобиля при движении вниз по уклону и

— удержание остановившегося транспортного средства на месте.

*плюс:

зарядка аккумулятор, стабилизирующий автомобиль в случае избыточной и недостаточной поворачиваемости, предотвращение пробуксовки колес (TCS).

Проблемы с тормозной системой

 

а- Затухание тормоза: Термин, обозначающий постепенный отказ тормоза, вызванный тормозом. перегрев. Состояние возникает, когда тормозные накладки становятся настолько горячими, что не могут дольше создают трение.

b-Колесо lockup: Блокировка колес происходит, когда колеса перестают вращаться во время остановки, и скольжение по тротуару.Торможение в критических условиях:

                                                     F b > Ф Ш Ш

Где:

            F b тормозная сила на колесе,

ф коэффициент сцепления между шиной и дорогой, а

W w вес на колесе.

 

c- Аквапланирование:  

Упражнения на аквапланирование, особенно резкое влияние на контакт между шиной и дорожным покрытием.Этот термин относится к состоянию, при котором слой воды отделяет шину от мокрого дорожное покрытие. Это явление возникает, когда под водой образуется клин воды. пятно контакта шины, отрывая ее от дороги. Шина начинает «плавать».

На склонность к аквапланированию влияют:

— глубина воды на поверхности дороги,

— скорость автомобиля,

— рисунок протектора, а

— износ шин, а также

— сила, с которой прижимается шина относительно дорожного покрытия (нагрузка на шины).

широкий шины особенно подвержены аквапланированию.

Это невозможно управлять или тормозить глиссирующим транспортным средством,

как ни рулевое управление, ни тормозные усилия не могут быть переданы

по дорожное покрытие.

 

Динамика линейного движения

(Тормозное усилие)

 

Тормозной путь:

Определения

когда обнаружена опасность или препятствие и точка, где

автомобиль останавливается.Это сумма расстояний

пройдено за время реакции t r , тормозная система начальный

задержка отклика t a (при постоянном скорость автомобиля v) и расстояние

пройдено в течение эффективного времени торможения t s . Альтернативно, половина

из период нарастания давления можно рассматривать как представляющий

полный замедление.

периодов, в течение которых не происходит активной задержки, составляет

объединены, чтобы сформировать кумулятивную задержку ответа, или время

потеря t против , как видно на рисунке.

 

т против = t r + t a + t s /2

 

и общее время t ч это время потери плюс время торможения t b

           

                       t h = t vs + t b = t vs + в/д

 

и следовательно, общее время остановки с ч

 

                       s h = v .t vs + v 2 /2a

  Реакция время {t r }

время реакции – это период, который проходит между распознаванием опасности или препятствия, решение водителя нажать на педаль тормоза и время принимает за ножной контакт с педалью тормоза. Время реакции не является фиксированной константой; в зависимости от отдельного производного и различных переменных среды, это может бушевать от 0.от 3 до 1,7 секунды

Тормоз время отклика и нарастания давления

реакция тормоза и время нарастания давления t и t определяются система

контроль и передающих устройств, а также мгновенным состоянием тормоза

себя (т. е. мокрые тормозные диски или диски). Это время может варьироваться от 0,36 до 0,54 секунды (t a + t s /2). Время срабатывания и нарастания давления больше, если тормозная система находится в плохое состояние.

 

Результат задержки реакции на остановку 1 с тормозной путь указан в таблице ниже.

Поверхность адгезия

Статический коэффициент трения:

Статический коэффициент трения (коэффициент сцепления шины с дорогой) определяется такими факторами, как скорость автомобиля, состояние шин и состояние дорожного покрытия.Цифры в Таблица применима к бетонным и битумным поверхностям из щебня в хорошем состоянии. То коэффициент трения скольжения (с заблокированным колесом) обычно ниже, чем коэффициент статического трения.

Антиблокировочная тормозная система

 

Проблемы возникают из-за блокировки колеса:

А- Если передние колеса заблокируются первыми, будет потеряна курсовая устойчивость.

Б- Если сначала заблокируются задние колеса, будет потеря курсовой устойчивости.

АБС компоненты:

1- Датчик скорости вращения колеса : Датчик с постоянным магнитом используется для определения скорости колеса путем отслеживания движения колеса.

2- Электронный модуль управления тормозной системой (EBCM) ИЛИ (ECU): Компьютер, управляющий работой системы ABS.

3- Гидравлический привод : Антиблокировочная тормозная система состоящий из электромагнитных клапанов, гидравлического насоса, аккумулятора и различных трубные соединения и электрические разъемы.

4- Контрольная лампа ABS : Индикаторная лампа желтого цвета установлен в комбинации приборов, загорается, когда есть проблема с антиблокировочная тормозная система.

 

Теория эксплуатации:

Когда сначала включаются тормоза, скорость вращения колес уменьшается более или менее в соответствии с со скоростью автомобиля в области 1 на графике.Если тормоза нажаты на высокий уровень или дорога скользкая, скорость одного или нескольких колес начинает быстро падают (точка 2), указывая. что шина прошла пик кривой m-скольжения и движется к блокировка. В этот момент вмешивается ABS и отпускает тормоза на тех колеса до того, как произойдет блокировка (пункт 3).

Как только скорость колеса снова возрастет, тормоза снова включаются. Задача ABS – удерживать каждую шину на транспортное средство, работающее вблизи пика m-slip кривой для этой шины, как показано на рисунке.

Представляем тормоз будущего! Все преимущества новых электрических тормозов Brembo | Brembo

Все развивается, включая тормозные системы автомобилей.

 

В настоящее время мы находимся на пороге революции, поскольку мы переходим от гидравлической системы к электрической, которая будет идти в ногу с автомобилями будущего. . Brembo готова сыграть ведущую роль в том, что обещает стать настоящим переходом к тормозной системе автомобилей.В течение почти двух десятилетий Brembo сосредоточилась на разработке комплексного решения для этой транспортной революции.

 

Это ставит Brembo в лидеры, готовые использовать все возможности мира, который стремится скорее к революции, чем к эволюции, просто подумайте об электромобилях, а также об автономных автомобилях. Brembo снова занимает свое место в качестве новатора тормозных систем, часто определяя тенденции в автомобильном секторе и предвосхищая потребности своих клиентов, чтобы служить потребителям и обществу в будущем мобильности.

 

С 2001 года растут инвестиции в НИОКР электрических тормозных систем, или, как это определяют инсайдеры, тормоза по проводам. Это та движущая сила, которая откроет двери для больших изменений в тормозных системах и заставляет говорить о том, что «тормоз будущего» вот-вот увидит свет. Это идет в ногу с развитием мехатроники и развитием транспортных средств, которые становятся более эффективными, взаимосвязанными и интеллектуальными.

 


 

Рекуперация энергии снижает как вес, так и выбросы, которые становятся все более важными для общества и производителей. Тормозная система будущего может сыграть решающую роль в обоих этих факторах.

 

Например, сегодня автомобильный мир уделяет большое внимание энергии, и тормозная система может оказаться источником, из которого можно извлечь большую ее часть. Brembo активно использует электронное торможение не только для дорожных автомобилей, но и для гоночных автомобилей.Эта технология, электрические тормозные системы, используется в самых напряженных условиях в Формуле-1 с 2014 года. Каковы отличия от традиционной системы и, прежде всего, каковы преимущества?​

Электронная тормозная система Brembo приводится в действие нажатием на педаль тормоза, как и в традиционной гидравлической системе, в этот момент датчик хода педали определяет положение педали и отправляет информацию на блок управления одновременно с педаль возвращает водителю ощущение торможения традиционной гидравлической системы.

Одновременно электронный блок управления обрабатывает сигнал, полученный от датчика педали, и отправляет команду на исполнительные устройства. Электромеханический гидравлический привод преобразует электрический импульс, полученный от блока управления, в гидравлическое давление/зажимную силу суппорта для замедления или остановки автомобиля.

 

Суппорт, управляемый приводом, может быть тормозным суппортом с традиционным гидравлическим соединением или электромеханическим суппортом, управляемым непосредственно блоком управления, который преобразует получаемую им электрическую энергию в тормозное усилие.Усилие передается через тормозные колодки непосредственно на чугунный, стальной или углеродно-керамический тормозной диск.

Тормозная система Brembo Brake-By-Wire разработана и изготовлена ​​в соответствии со всеми стандартами безопасности, предписанными законом и автомобильной промышленностью (например, омологацией и ISO 26262).
Если в системе произойдет сбой, она обнаружит любые аномалии и заблокирует неработающий элемент. Архитектура исполнительных механизмов, распределенных между колесами, позволяет тормозной системе Brembo Brake-By-Wire автоматически перенастраивать себя в случае отказа одного устройства.Система будет продолжать работать через работающие устройства, гарантируя замедление, которое в любом случае превышает требуемое законом (2,44 м/с2). Эта отличительная черта системы Brembo Brake-By-Wire гарантирует, что потребности водителей в эффективности торможения будут удовлетворены даже в случае случайной неисправности.
​В случае полного отключения электроэнергии традиционная гидравлическая система безопасности заменит систему Brake-by-Wire, позволяющую тормозной системе работать на передних колесах, что соответствует соответствующему законодательству для вторичного торможения.

Электротормозная система, подобная этой, может дать водителям, производителям транспортных средств и обществу в целом множество преимуществ.​


 

Преимущества для водителей — повышенная безопасность, комфорт и индивидуализация.​

Начнем с водителей и с такой непреложной ценности, как безопасность. Электрическая тормозная система позволяет значительно сократить тормозной путь по сравнению с традиционной системой.

 

В частности, система электронного торможения Brembo в своей последней эволюции сделала большой скачок вперед по времени отклика, превзойдя старый стандарт 300-500 миллисекунд до 100 миллисекунд! Просто чтобы лучше понять, что означают эти числа, имейте в виду, что за 300 миллисекунд автомобиль, движущийся со скоростью 120 км/ч, покроет 11 метров, а мгновение ока занимает примерно 250 миллисекунд.

 

Скорость срабатывания тормозов имеет жизненно важное значение, потому что, если целью является немедленная остановка, то только благодаря большей реактивности системы можно сэкономить несколько футов тормозного пути.Это, в отношении безопасности, может оказаться решающим. Поэтому скорость реагирования означает безопасность.​

 

В дополнение к преимуществам с точки зрения чувствительности (повышенная безопасность и повышенная эффективность торможения) есть также много преимуществ для комфорта водителя.

На самом деле водитель, благодаря системе электронного торможения, сможет настраивать как тормозное усилие, так и реакцию педали. Например, водители смогут выбирать между различными схемами торможения в зависимости от личных предпочтений и стиля вождения (т.грамм. спорт, трек, комфорт) и, аналогичным образом, смогут выбирать между различными моделями отклика педали в соответствии со своими предпочтениями.​


 

Что касается комфорта, то одним из основных преимуществ тормозной системы Brembo является стабильность торможения независимо от нагрузки. Фактически, тормозная система автоматически адаптируется к условиям нагрузки автомобиля, поддерживая постоянное тормозное пространство. Кроме того, еще одной особенностью комфорта вождения благодаря системе Brake-by-Wire является плавный и незаметный для водителя переход от диссипативного торможения к рекуперативному торможению.​

 

Если пойти дальше, помимо интеграции двух типов торможения, рекуперативного и диссипативного, что известно как «смешение», это может привести к автономному торможению, торможению даже без использования педали тормоза!

 

При отпускании акселератора система электронного торможения выполняет автоматическую компенсацию торможения двигателем или рекуперативного торможения для достижения стабильного замедления, позволяющего остановить или контролировать транспортное средство при нормальном движении по дороге и в городе и на трассе.

 

Для экстренного торможения или более спортивного вождения или трек-дня требуется нажатие на педаль тормоза, как и сегодня.

 

Преимущества для водителей также важны с экономической точки зрения. Более тесная интеграция с системой рекуперативного торможения благодаря использованию системы электронного торможения означает меньший износ, что может привести к меньшему износу дисков и колодок.

Даже сокращение тормозной жидкости не является незначительным по сравнению со стандартной тормозной системой, это включает в себя сокращение затрат на техническое обслуживание и эксплуатацию.Кроме того, техническое обслуживание дисков и колодок можно синхронизировать с общей программой технического обслуживания автомобиля благодаря более контролируемому износу. Преимущества для автопроизводителей: ​



Преимущества системы электронного торможения не ограничиваются преимуществами безопасности, производительности и комфорта для водителя. Фактически, электрификация тормозной системы открывает двери для большего взаимодействия с другими компонентами.Просто подумайте об активном торможении при отпускании акселератора или об использовании отдельного тормоза для каждого колеса в качестве дифференциальной или стабилизирующей функции автомобиля.

 

Благодаря системе электронного торможения производители могут подумать о перемещении компонентов, а также переосмыслить архитектуру автомобиля в пользу пространства, безопасности, массы и производительности. В будущем транспортные средства будут радикально отличаться от того, что сейчас находится на дорогах. Электронная система торможения предлагает производителям большую гибкость для оптимизации распределения веса и общих характеристик автомобиля.​


 

Более экологичная система​

Развивающаяся электромеханическая система торможения Brembo кажется идеальным решением как для современных автомобилей, так и для автомобилей будущего.

 

Интеграция торможения по проводам с системой рекуперации энергии позволяет сократить количество фаз зарядки аккумуляторов электромобилей или гибридных автомобилей.

 

Кроме того, большим преимуществом системы электронного торможения для автомобилей с традиционным двигателем внутреннего сгорания является дальнейшее снижение явления, называемого «остаточным крутящим моментом».

 

Остаточный крутящий момент представляет собой естественное и нежелательное трение между диском и колодками вне фазы торможения, которое вызывает, хотя и незаметно, торможение автомобиля и увеличивает расход топлива и, следовательно, выбросы.

 

Это явление уже сведено к минимуму традиционными суппортами Brembo с фиксированным гидравлическим приводом, но оно еще более уменьшено благодаря системе электронного торможения.

 

Фактически это позволяет сократить выбросы CO2 или увеличить запас хода электромобилей.Заглядывая в будущее, новые компоненты обеспечат лучшую интеграцию благодаря датчикам, глазам и ушам беспилотного автомобиля.

 

Более длительный срок также означает большее внимание к окружающей среде, и, опять же, окружающая среда выиграет от удаления жидкостей и уменьшения количества деталей.


 

Взгляд в будущее

Электронная система торможения также предназначена для интеграции с системами рекуперативного торможения и помощи водителю.Поэтому нетрудно представить, что наступит день, когда машины будут тормозить сами по себе, как им скажет автопилот (как это уже происходит сейчас с электрорулем).

Система Brake-by-Wire явно предлагает дополнительные преимущества по сравнению с обычными транспортными средствами, а также, безусловно, настолько универсальна, что может быть открыта для любого сценария.

Это ставит Brembo в наилучшее положение, готовое воспользоваться всеми возможностями мира, в котором преобладает революция, а не эволюция, подумайте только об электромобилях, а также о беспилотных автомобилях.Brembo снова занимает свое место в качестве новатора тормозных систем, хорошо помня о тенденциях в автомобильном секторе и предвосхищая потребности своих клиентов, водителей автомобилей и общества в целом.​

 

​ 


 

Как работает антиблокировочная система тормозов | HowStuffWorks

Теория антиблокировочной системы тормозов проста. Пробуксовывающее колесо (где пятно контакта шины скользит относительно дороги) имеет меньшее сцепление , чем нескользящее колесо.Если вы застряли на льду, вы знаете, что если ваши колеса буксуют, у вас нет сцепления с дорогой. Это связано с тем, что пятно контакта скользит относительно льда (дополнительную информацию см. в разделе Тормоза: как работает трение). Удерживая колеса от проскальзывания, когда вы замедляетесь, антиблокировочная система тормозов приносит вам две выгоды: вы останавливаетесь быстрее и можете управлять автомобилем во время остановки.

Система ABS состоит из четырех основных компонентов:

  • Датчики скорости
  • Насос
  • Клапаны
  • Контроллер

Датчики скорости

Антиблокировочная тормозная система должна знать, когда колесу нужно что-то знать запереть.Эту информацию предоставляют датчики скорости, расположенные на каждом колесе или, в некоторых случаях, на дифференциале.

Клапаны

В тормозной магистрали каждого тормоза есть клапан, управляемый системой ABS. В некоторых системах клапан имеет три положения:

  • В первом положении клапан открыт ; давление от главного цилиндра передается прямо на тормоз.
  • Во втором положении клапан блокирует линию, изолируя этот тормоз от главного цилиндра.Это предотвращает дальнейшее повышение давления, если водитель сильнее нажимает на педаль тормоза.
  • В третьем положении клапан сбрасывает часть давления тормоза.

Насос

Поскольку клапан способен сбрасывать давление в тормозах, должен быть какой-то способ восстановить это давление. Это то, что делает насос; когда клапан снижает давление в линии, насос должен восстановить давление.

Контроллер

Контроллер — это компьютер в автомобиле.Он следит за датчиками скорости и управляет клапанами.

АБС в работе

Существует множество различных вариантов и алгоритмов управления системами АБС. Мы обсудим, как работает одна из самых простых систем.

Контроллер постоянно контролирует датчики скорости. Он ищет замедлений в колесе, которые являются необычными. Непосредственно перед блокировкой колеса происходит резкое замедление. Если его не остановить, колесо остановится намного быстрее, чем любой автомобиль.Автомобилю может потребоваться пять секунд, чтобы остановиться со скорости 60 миль в час (96,6 км/ч) в идеальных условиях, но заблокировавшееся колесо может перестать вращаться менее чем за секунду.

Контроллер ABS знает, что такое быстрое торможение невозможно, поэтому он снижает давление на этот тормоз, пока не увидит ускорение, затем увеличивает давление, пока снова не увидит замедление. Он может сделать это очень быстро, до того, как шина сможет существенно изменить скорость. В результате шина замедляется с той же скоростью, что и автомобиль, а тормоза удерживают шины очень близко к тому моменту, когда они начнут блокироваться.

Оставить ответ