Двигатель с открытым ротором: GE NASA. » DailyTechInfo — , . – Турбина всему голова

Содержание

Турбина всему голова

Существующие сегодня реактивные двигатели уже не считаются экономичными и удобными для использования и обслуживания, и несколько мировых компаний уже приступили к разработке новых типов силовых установок. Они должны стать легче, экономичнее и мощнее существующих сегодня двигателей пассажирских лайнеров.

Фактически отцом современных двигателей, устанавливаемых на транспортные и пассажирские самолеты, является советский конструктор Архип Люлька. В 1941 году он получил патент на изобретение турбореактивного двухконтурного двигателя, однако из-за Великой Отечественной войны построить прототип установки не успел. Первый двигатель такого типа в 1943 году испытали в Германии. От обычных реактивных двигателей, разработка которых началась чуть раньше, новые силовые установки отличались течением воздушных потоков по двум контурам.

Внутренний контур состоит из зоны компрессоров, камеры сгорания, турбины (газогенератор) и сопла. Во время полета воздух затягивается и немного сжимается вентилятором, самым большим винтом и самым первым по ходу полета. Затем часть этого воздуха поступает в компрессор и сжимается еще сильнее, после чего попадает в камеру сгорания, где смешивается с топливом. После сгорания горючего раскаленные газы вырываются из камеры сгорания и вращают турбину.

Схема турбовентиляторного реактивного двигателя. Слева направо: вентилятор, компрессор низкого давления, компрессор высокого давления, вал компрессора низкого давления, вал компрессора высокого давления, камера сгорания, турбина высокого давления, турбина низкого давления, сопло.

K. Aainsqatsi / wikipedia.org

Турбина представляет собой жаропрочный воздушный винт, жестко посаженный на вал. Этим валом турбина связана с компрессорами и вентилятором на входе двигателя. После турбины реактивная струя попадает в сопло и истекает из него, формируя часть тяги двигателя. Вторая часть воздуха после вентилятора поступает в направляющий аппарат. Это такие вертикальные неподвижные лопатки. В этой части воздушный поток тормозится, из-за чего давление в нем повышается. После этого сжатый воздух сразу поступает в сопло и формирует остаток тяги.

Сегодня турбореактивные двухконтурные двигатели делят на два типа: с низкой и высокой степенью двухконтурности. Степень двухконтурности — это отношение объема воздуха за момент времени проходящего через внешний контур, то есть, минуя камеру сгорания, к объему воздуха, проходящего через внутренний контур, то есть газогенератор. Двигатели со степенью двухконтурности меньше двух традиционно ставятся на боевые самолеты, поскольку имеют небольшие размеры и большую тягу. Но они же расходуют много топлива.

Если у силовой установки степень двухконтурности больше двух, его принято называть турбовентиляторным реактивным двигателем. В такой силовой установке большая часть воздуха в полете проходит по внешнему контуру. На современных двигателях от 70 до 85 процентов тяги формируется именно вентилятором, в то время как внутренний контур используется лишь для привода дополнительных агрегатов, типа генератора, а также самого вентилятора и компрессоров.

В турбовентиляторных двигателях коэффициент полезного действия зависит от величины степени двухконтурности. Но увеличение двухконтурности приводит и к увеличению размеров двигателя, его массы и аэродинамических характеристик (большой двигатель имеет большое лобовое сопротивление). В целом же турбовентиляторный двигатель не может развивать скорость выше скорости звука, но имеет небольшой расход топлива, что как раз очень важно для пассажирских и грузовых перевозок.

Турбовентиляторные двигатели в гражданской авиации используются на протяжении последних нескольких десятилетий и зарекомендовали себя как надежные, относительно дешевые и экономичные силовые установки. Эти показатели разработчики из года в год стараются снизить, применяя все новые технические решения вроде саблевидных лопаток вентилятора, позволяющих сильнее сжимать воздух в зоне входа в компрессорную часть. Но эти решения не дают существенной экономии в расходе топлива.

Американский двигатель CFM56, устанавливаемый на самолеты нескольких типов компаний Boeing и Airbus, имеет степень двухконтурности 5,5 и удельный расход топлива в крейсерском режиме 545 граммов на килограмм-силы в час. Для сравнения, двигатель АЛ-31Ф истребителей Су-27 имеет степень двухконтурности 0,57 и удельный расход топлива в крейсерском режиме в 750 граммов на килограмм-силы в час и 1900 граммов на килограмм-силы в час на форсаже. Первый CFM56 расходовал чуть больше 700 граммов топлива на килограмм-силы в час.

Турбовентиляторный реактивный двигатель на самолете Boeing 777-300

Boeing

Частичной экономичности новых турбовентиляторных двигателей конструкторы смогли добиться и за счет использования редуктора. Его установили между вентилятором и валом турбины, благодаря чему удалось избавиться от жесткой связки между горячей и холодной частями силовой установки. Кроме того, вентилятор и турбина стали работать в оптимальных друг для друга условиях. Но для существенной экономии конструкторы, помимо прочего, стали думать в сторону турбореактивных двигателей с ультравысокой степенью двухконтурности.

Ультравысокой, или сверхвысокой, степенью двухконтурности считается, когда объем воздуха проходящего за момент времени через внешний контур в двадцать и более раз больше объема воздуха, проходящего через внутренний контур. Так изобрели турбовинтовентиляторный реактивный двигатель. Он имеет два (иногда три) вентилятора, расположенных на одной оси и вращающихся в разные стороны. Лопатки таких вентиляторов имеют саблевидную форму, а сами роторы — изменяемый шаг.

Схема турбовинтовентиляторного реактивного двигателя с открытым винтовентилятором

Hamilton Sundstrand Corporation

Внешне турбовинтовентиляторные двигатели могут быть похожи на обычные турбовинтовые с воздушными винтами. Однако в новых силовых установках диаметр вентиляторов в среднем на 40 процентов меньше обычных воздушных винтов, а воздушный поток за лопатками вентилятора сжимается по разному. Например, в зоне воздухозаборника компрессорной части он, как и у турбовентиляторных двигателей, имеет большую степень сжатия.

Одним из примеров турбовинтовентиляторных двигателей является российский НК-93. Иногда его называют турбовинтовентиляторным реактивным двигателем с закапотированным ротором, или винтовентилятором. В нем винтовентилятор вместе с небольшим по длине внешним контуром забран в капот, специальную конструкцию, защищающую лопатки и упорядочивающую воздушный поток в полете. Такой двигатель примерно на 40 процентов экономичнее сопоставимого по мощности Д-30КП транспортного самолета Ил-76.

Сегодня разработка НК-93 приостановлена. Проект официально не закрыт, но будет ли он когда-либо завершен, не ясно. По разным данным, удельный расход топлива двигателем НК-93 в крейсерском режиме полета составил бы от 370 до 440 граммов на килограмм-силы в час. При этом до 87 процентов тяги будут формироваться именно винто-вентилятором. В третьей серии двигателей Д-30КУ-154 для Ил-76 удельный расход топлива удалось снизить до 482 граммов на килограмм-силы в час.

Схема турбовинтовентиляторного реактивного двигателя с закапотированным ротором

avia-simply.ru

Тяга НК-93, по предварительным расчетам, должна была составить около 18 тысяч килограммов-силы. Для сравнения, тот же Д-30КУ-154 способен выдавать тягу в 10,8 тысячи килограммов-силы. Отчасти неудачи проекта НК-93 объясняются недофинансированием проекта, а также не совсем удачными испытаниями опытной модели, некоторые показатели которой оказались несколько выше расчетных. Кроме того, несмотря на свою эффективность и экономичность, НК-93 является двигателем очень крупным.

Между тем, в 2000-х годах Запорожское машиностроительное конструкторское бюро «Прогресс» разработало двигатель Д-27. Он относится к турбовинтовентиляторным реактивным двигателям с открытым винтовентилятором. Сегодня он является единственной в мире силовой установкой такого типа, выпускаемой серийно. Д-27 используется на перспективном украинском военно-транспортном самолете Ан-70. В этом двигателе поток воздуха создаётся двумя соосными многолопастными саблевидными винтами.

Тяга двигателя Д-27 составляет 13,1 тысячи килограммов силы, а удельный расход топлива в крейсерском режиме — около 140 граммов на килограмм-силы в час. Турбовинтовентиляторные двигатели с открытым ротором могут иметь немного различную конструкцию. Как правило, в них предусмотрено использование редуктора для привода винтовентилятора турбиной. Украинский двигатель в своей конструкции редуктор использует. Этот узел позволяет выставить оптимальные обороты для турбины и оппозитно-вращающихся роторов.

В Евросоюзе в настоящее время действует многолетняя программа разработки новых технологий для гражданской авиации, которые в целом должны будут сделать пассажирские самолеты будущего экономичнее, экологичнее, тише и комфортнее. Этот проект называется Clean Sky 2. В рамках этого проекта французская компания Snecma, входящая в холдинг Safran, приступила к сборке первого опытного образца турбовинтовентиляторного двигателя с открытым ротором. Испытания силовой установки состоятся до конца 2016 года.

Д-27

green-stone13.livejournal.com

Новый опытный двигатель на время проверок установят на пассажирский лайнер Airbus 340 на специальном подвесе в хвостовой части фюзеляжа. Перед летными испытаниями перспективный двигатель проверят на тестовом стенде на полигоне во французском Истре. Параметры перспективной силовой установки разработчики сравнивают с распространенными CFM56. Ожидается, что выбросы углекислого газа двигателя с открытым ротором будут на 30 процентов меньше, чем у CFM56.

Для сборки опытного образца двигателя Snecma намерена использовать газогенератор турбореактивного двухконтурного двигателя с форсажной камерой M88. Такими силовыми установками оснащаются французские истребители Dassault Rafale. С вала, раскручиваемого турбиной двигателя, через редуктор будет приводиться открытый винтовентилятор с роторами диаметром около 420 сантиметров. Лопатки вентилятора будут изменять угол атаки. Частота вращения винтовентилятора составит около 800 оборотов в минуту.

Для сравнения скорость вращения вентилятора двигателя CFM56 составляет 5200 оборотов в минуту в режиме полной мощности. Двигатель с открытым вентилятором, разрабатываемый Snecma, сможет развивать тягу в 111 килоньютонов (11,3 тысячи килограммов-силы). Идея французского двигателя базируется на американском GE36, разработка которого велась в 1980-х годах, однако из-за несовершенства материалов была закрыта. В частности, общей чертой для двигателей с открытым ротором является изогнутая форма лопаток.


Дело в том, что эффективность двигателя, в общих чертах, зависит от шага винта и скорости вращения. Чем эти показатели выше, тем быстрее полетит самолет. Однако при определенной скорости вращения вала наступает момент, когда скорость обтекания воздушным потоком законцовок лопастей приближается к сверхзвуковой. Из-за этого весь винт теряет эффективность. Изогнутая форма позволяет снизить частоту вращения вала и несколько уменьшить шаг винта, не потеряв в эффективности.

Разработчики рассчитывают, что новые турбовинтовентиляторные реактивные двигатели с открытым ротором будут в целом тише современных турбовинтовых и турбовентиляторных двигателей. Этого можно достичь за счет сдвига шума в более высокочастотную область, а высокочастотный шум, как известно, существенно более сильно спадает с увеличением расстояния до наблюдателя.

С каждым годом проектирование новых авиационных двигателей становится все более сложным. Времена, когда за счет использования нового принципа сжигания топлива или введения дополнительного воздушного контура можно было существенно повысить эффективность и экономичность конструкции, прошли. Теперь конструкторам уже приходится решать множество тесно связанных друг с другом задач и искать новые материалы для производства различных деталей двигателей.

Василий Сычёв

Турбовинтовентиляторные реактивные двигатели гражданской авиации ближайшего будущего

Существующие сегодня реактивные двигатели уже не считаются экономичными и удобными для использования и обслуживания, и несколько мировых компаний уже приступили к разработке новых типов силовых установок. Они должны стать легче, экономичнее и мощнее существующих сегодня двигателей пассажирских лайнеров. Фактически отцом современных двигателей, устанавливаемых на транспортные и пассажирские самолеты, является советский конструктор Архип Люлька. В 1941 году он получил патент на изобретение турбореактивного двухконтурного двигателя, однако из-за Великой Отечественной войны построить прототип установки не успел. Первый двигатель такого типа в 1943 году испытали в Германии. От обычных реактивных двигателей, разработка которых началась чуть раньше, новые силовые установки отличались течением воздушных потоков по двум контурам.

Воспользуйтесь нашими услугами

Внутренний контур состоит из зоны компрессоров, камеры сгорания, турбины (газогенератор) и сопла. Во время полета воздух затягивается и немного сжимается вентилятором, самым большим винтом и самым первым по ходу полета. Затем часть этого воздуха поступает в компрессор и сжимается еще сильнее, после чего попадает в камеру сгорания, где смешивается с топливом. После сгорания горючего раскаленные газы вырываются из камеры сгорания и вращают турбину.

Схема турбовентиляторного реактивного двигателя. Слева направо: вентилятор, компрессор низкого давления, компрессор высокого давления, вал компрессора низкого давления, вал компрессора высокого давления, камера сгорания, турбина высокого давления, турбина низкого давления, сопло. K. Aainsqatsi / wikipedia.org

Турбина представляет собой жаропрочный воздушный винт, жестко посаженный на вал. Этим валом турбина связана с компрессорами и вентилятором на входе двигателя. После турбины реактивная струя попадает в сопло и истекает из него, формируя часть тяги двигателя. Вторая часть воздуха после вентилятора поступает в направляющий аппарат. Это такие вертикальные неподвижные лопатки. В этой части воздушный поток тормозится, из-за чего давление в нем повышается. После этого сжатый воздух сразу поступает в сопло и формирует остаток тяги.

Сегодня турбореактивные двухконтурные двигатели делят на два типа: с низкой и высокой степенью двухконтурности. Степень двухконтурности — это отношение объема воздуха за момент времени проходящего через внешний контур, то есть, минуя камеру сгорания, к объему воздуха, проходящего через внутренний контур, то есть газогенератор. Двигатели со степенью двухконтурности меньше двух традиционно ставятся на боевые самолеты, поскольку имеют небольшие размеры и большую тягу. Но они же расходуют много топлива.

Если у силовой установки степень двухконтурности больше двух, его принято называть турбовентиляторным реактивным двигателем. В такой силовой установке большая часть воздуха в полете проходит по внешнему контуру. На современных двигателях от 70 до 85 процентов тяги формируется именно вентилятором, в то время как внутренний контур используется лишь для привода дополнительных агрегатов, типа генератора, а также самого вентилятора и компрессоров.

В турбовентиляторных двигателях коэффициент полезного действия зависит от величины степени двухконтурности. Но увеличение двухконтурности приводит и к увеличению размеров двигателя, его массы и аэродинамических характеристик (большой двигатель имеет большое лобовое сопротивление). В целом же турбовентиляторный двигатель не может развивать скорость выше скорости звука, но имеет небольшой расход топлива, что как раз очень важно для пассажирских и грузовых перевозок.

НК-93 avia-simply.ru

Турбовентиляторные двигатели в гражданской авиации используются на протяжении последних нескольких десятилетий и зарекомендовали себя как надежные, относительно дешевые и экономичные силовые установки. Эти показатели разработчики из года в год стараются снизить, применяя все новые технические решения вроде саблевидных лопаток вентилятора, позволяющих сильнее сжимать воздух в зоне входа в компрессорную часть. Но эти решения не дают существенной экономии в расходе топлива.

Американский двигатель CFM56, устанавливаемый на самолеты нескольких типов компаний Boeing и Airbus, имеет степень двухконтурности 5,5 и удельный расход топлива в крейсерском режиме 545 граммов на килограмм-силы в час. Для сравнения, двигатель АЛ-31Ф истребителей Су-27 имеет степень двухконтурности 0,57 и удельный расход топлива в крейсерском режиме в 750 граммов на килограмм-силы в час и 1900 граммов на килограмм-силы в час на форсаже. Первый CFM56 расходовал чуть больше 700 граммов топлива на килограмм-силы в час.

Турбовентиляторный реактивный двигатель на самолете Boeing 777-300 Boeing

Частичной экономичности новых турбовентиляторных двигателей конструкторы смогли добиться и за счет использования редуктора. Его установили между вентилятором и валом турбины, благодаря чему удалось избавиться от жесткой связки между горячей и холодной частями силовой установки. Кроме того, вентилятор и турбина стали работать в оптимальных друг для друга условиях. Но для существенной экономии конструкторы, помимо прочего, стали думать в сторону турбореактивных двигателей с ультравысокой степенью двухконтурности.

Ультравысокой, или сверхвысокой, степенью двухконтурности считается, когда объем воздуха проходящего за момент времени через внешний контур в двадцать и более раз больше объема воздуха, проходящего через внутренний контур. Так изобрели турбовинтовентиляторный реактивный двигатель. Он имеет два (иногда три) вентилятора, расположенных на одной оси и вращающихся в разные стороны. Лопатки таких вентиляторов имеют саблевидную форму, а сами роторы — изменяемый шаг.

Схема турбовинтовентиляторного реактивного двигателя с открытым винтовентилятором Hamilton Sundstrand Corporation

Внешне турбовинтовентиляторные двигатели могут быть похожи на обычные турбовинтовые с воздушными винтами. Однако в новых силовых установках диаметр вентиляторов в среднем на 40 процентов меньше обычных воздушных винтов, а воздушный поток за лопатками вентилятора сжимается по разному. Например, в зоне воздухозаборника компрессорной части он, как и у турбовентиляторных двигателей, имеет большую степень сжатия.

Одним из примеров турбовинтовентиляторных двигателей является российский НК-93. Иногда его называют турбовинтовентиляторным реактивным двигателем с закапотированным ротором, или винтовентилятором. В нем винтовентилятор вместе с небольшим по длине внешним контуром забран в капот, специальную конструкцию, защищающую лопатки и упорядочивающую воздушный поток в полете. Такой двигатель примерно на 40 процентов экономичнее сопоставимого по мощности Д-30КП транспортного самолета Ил-76.

thinkdefence.co.uk

Сегодня разработка НК-93 приостановлена. Проект официально не закрыт, но будет ли он когда-либо завершен, не ясно. По разным данным, удельный расход топлива двигателем НК-93 в крейсерском режиме полета составил бы от 370 до 440 граммов на килограмм-силы в час. При этом до 87 процентов тяги будут формироваться именно винто-вентилятором. В третьей серии двигателей Д-30КУ-154 для Ил-76 удельный расход топлива удалось снизить до 482 граммов на килограмм-силы в час.

Схема турбовинтовентиляторного реактивного двигателя с закапотированным ротором avia-simply.ru

Тяга НК-93, по предварительным расчетам, должна была составит около 18 тысяч килограммов-силы. Для сравнения, тот же Д-30КУ-154 способен выдавать тягу в 10,8 тысячи килограммов-силы. Отчасти неудачи проекта НК-93 объясняется недофинансированием проекта, а также не совсем удачными испытаниями опытной модели, некоторые показатели которой оказались несколько выше расчетных. Кроме того, несмотря на свою эффективность и экономичность, НК-93 является двигателем очень крупным.

Между тем, в 2000-х годах Запорожское машиностроительное конструкторское бюро «Прогресс» разработало двигатель Д-27. Он относится к турбовинтовентиляторным реактивным двигателям с открытым винтовентилятором. Сегодня он является единственной в мире силовой установкой такого типа, выпускаемой серийно. Д-27 используется на перспективном украинском военно-транспортном самолете Ан-70. В этом двигателе поток воздуха создаётся двумя соосными многолопастными саблевидными винтами.

Тяга двигателя Д-27 составляет 13,1 тысячи килограммов силы, а удельный расход топлива в крейсерском режиме — около 140 граммов на килограмм-силы в час. Турбовинтовентиляторные двигатели с открытым ротором могут иметь немного различную конструкцию. Как правило, в них предусмотрено использование редуктора для привода винтовентилятора турбиной. Украинский двигатель в своей конструкции редуктор использует. Этот узел позволяет выставить оптимальные обороты для турбины и оппозитно-вращающихся роторов.

В Евросоюзе в настоящее время действует многолетняя программа разработки новых технологий для гражданской авиации, которые в целом должны будут сделать пассажирские самолеты будущего экономичнее, экологичнее, тише и комфортнее. Этот проект называется Clean Sky 2. В рамках этого проекта французская компания Snecma, входящая в холдинг Safran, приступила к сборке первого опытного образца турбовинтовентиляторного двигателя с открытым ротором. Испытания силовой установки состоятся до конца 2016 года.

Д-27 green-stone13.livejournal.com

Новый опытный двигатель на время проверок установят на пассажирский лайнер Airbus 340 на специальном подвесе в хвостовой части фюзеляжа. Перед летными испытаниями перспективный двигатель проверят на тестовом стенде на полигоне во французском Истре. Параметры перспективной силовой установки разработчики сравнивают с распространенными CFM56. Ожидается, что выбросы углекислого газа двигателя с открытым ротором будут на 30 процентов меньше, чем у CFM56.

Для сборки опытного образца двигателя Snecma намерена использовать газогенератор турбореактивного двухконтурного двигателя с форсажной камерой M88. Такими силовыми установками оснащаются французские истребители Dassault Rafale. С вала, раскручиваемого турбиной двигателя, через редуктор будет приводиться открытый винтовентилятор с роторами диаметром около 420 сантиметров. Лопатки вентилятора будут изменять угол атаки. Частота вращения винтовентилятора составит около 800 оборотов в минуту.

Для сравнения скорость вращения вентилятора двигателя CFM56 составляет 5200 оборотов в минуту в режиме полной мощности. Двигатель с открытым вентилятором, разрабатываемый Snecma, сможет развивать тягу в 111 килоньютонов (11,3 тысячи килограммов-силы). Идея французского двигателя базируется на американском GE36, разработка которого велась в 1980-х годах, однако из-за несовершенства материалов была закрыта. В частности, общей чертой для двигателей с открытым ротором является изогнутая форма лопаток.

Дело в том, что эффективность двигателя, в общих чертах, зависит от шага винта и скорости вращения. Чем эти показатели выше, тем быстрее полетит самолет. Однако при определенной скорости вращения вала наступает момент, когда скорость обтекания воздушным потоком законцовок лопастей приближается к сверхзвуковой. Из-за этого весь винт теряет эффективность. Изогнутая форма позволяет снизить частоту вращения вала и несколько уменьшить шаг винта, не потеряв в эффективности.

Разработчики рассчитывают, что новые турбовинтовентиляторные реактивные двигатели с открытым ротором будут в целом тише современных турбовинтовых и турбовентиляторных двигателей. Этого можно достичь за счет сдвига шума в более высокочастотную область, а высокочастотный шум, как известно, существенно более сильно спадает с увеличением расстояния до наблюдателя.

С каждым годом проектирование новых авиационных двигателей становится все более сложным. Времена, когда за счет использования нового принципа сжигания топлива или введения дополнительного воздушного контура можно было существенно повысить эффективность и экономичность конструкции, прошли. Теперь конструкторам уже приходится решать множество тесно связанных друг с другом задач и искать новые материалы для производства различных деталей двигателей.

Василий Сычёв
Источник: https://zen.yandex.ru/

Воспользуйтесь нашими услугами

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Двигатели будущего: чувство такта — журнал За рулем

Умы изобретателей неустанно рождают альтернативные конструкции традиционных агрегатов. Чаще всего это один из главных узлов автомобиля — двигатель. Отделим реальность от утопии?

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

У OPOC единый коленвал в центре двигателя. Сделать мотор легче и компактнее, отказавшись от второго коленвала, позволила оригинальная компоновка шатунов. За открытие впускных и выпускных окон в стенках цилиндров отвечают сами поршни.

Все схемы открываются в полный размер по клику.

ВСТРЕЧНОЕ ДВИЖЕНИЕ

Особенность двухтактного дизеля профессора Питера Хофбауэра, посвятившего 20 лет своей жизни работе в концерне «Фольксваген», — два поршня в одном цилиндре, движущиеся навстречу друг другу. И название это подтверждает: Opposed Piston Opposed Cylinder (OPOC) — встречные поршни, встречные цилиндры.

Похожую схему еще в середине прошлого века использовали в авиации и танкостроении, например, на немецких «Юнкерсах» или советском танке T-64. Дело в том, что в традиционном двухтактном двигателе оба окна для газообмена перекрывает один поршень, а в двигателях с встречными поршнями в зоне хода одного поршня располагается впускное окно, в зоне хода второго — выпускное. Такая конструкция позволяет раньше открывать выпускное окно и благодаря этому лучше очищать камеру сгорания от отработавших газов. И заранее закрывать, чтобы сберечь некоторое количество рабочей смеси, которое у двухтактного двигателя обычно выбрасывается в выхлопную трубу.

В чем же изюминка конструкции профессора? В центральном (между цилиндрами) расположении коленвала, обслуживающего сразу все поршни. Это решение привело к довольно замысловатой конструкции шатунов. Их по паре на каждой шейке коленвала, причем на внешние поршни приходится по паре шатунов, расположенных по обе стороны цилиндра. Это схема позволила обойтись одним коленвалом (у прежних моторов их было два, размещенных по краям двигателя) и сделать компактный, легкий агрегат. В четырехтактных двигателях циркуляцию воздуха в цилиндре обеспечивает сам поршень, в моторе OPOC — турбонаддув. Для лучшей эффективности быстро разогнать турбину помогает электромотор, который в определенных режимах становится генератором и рекуперирует энергию.

Опытный образец, сделанный для армии без оглядки на экологические нормы, при массе 134 кг развивает 325 л.с. Подготовлен и гражданский вариант — с примерно на сотню сил меньшей отдачей. Как заявляет создатель, в зависимости от исполнения мотор ОРОС на 30–50% легче прочих дизелей сравнимой мощности и в два — четыре раза компактнее. Даже по ширине (это самое внушительное габаритное измерение) ОРОС всего вдвое превосходит один из самых компактных автомобильных агрегатов в мире — двухцилиндровый фиатовский «Твинэйр».

Мотор OPOC — образец модульной конструкции: двухцилиндровые блоки можно компоновать в многоцилиндровые агрегаты, соединяя их электромагнитными муфтами. Когда полная мощность не требуется, для экономии топлива один или несколько модулей могут отключаться. В отличие от обычных двигателей с отключаемыми цилиндрами, где коленвал шевелит даже «отдыхающие» поршни, механических потерь можно избежать. Интересно, а как обстоят дела с топливной экономичностью и вредными выбросами? Разработчик предпочитает обходить этот вопрос молчанием. Понятное дело — тут позиции двухтактников традиционно слабы.

РАЗДЕЛЬНОЕ ПИТАНИЕ

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

В двигателе Кармело Скудери классические четыре такта распределены между двумя цилиндрами: впуск и сжатие происходят в одном, а рабочий ход и выпуск — в другом.

Еще один пример ухода от традиционных догм. Кармело Скудери покусился на святое правило четырехтактных моторов: весь рабочий процесс должен происходить строго в одном цилиндре. Изобретатель поделил цикл между двумя цилиндрами: один отвечает за впуск смеси и ее сжатие, второй — за рабочий ход и выпуск. При этом традиционные четыре такта двигатель, именуемый мотором с разделенным циклом (SCC — Split Cycle Combustion), проходит всего за один оборот коленвала, то есть в два раза быстрее.

Вот как этот мотор работает. В первом цилиндре поршень сжимает воздух и подает его в соединительный канал. Клапан открывается, форсунка впрыскивает топливо, и смесь под давлением врывается во второй цилиндр. Сгорание в нем начинается при движении поршня вниз, в отличие от двигателя Отто, где смесь поджигают чуть раньше, чем поршень достигнет верхней мертвой точки. Таким образом, сгорающая смесь не препятствует в начальной стадии горения движущему навстречу поршню, а, наоборот, подталкивает его. Создатель мотора обещает удельную мощность в 135 л.с. с литра рабочего объема. Причем при значительном сокращении вредных выбросов благодаря более эффективному сгоранию смеси — например, с уменьшением выхода NOx на 80% в сравнении с этим же показателем для традиционного ДВС. Заодно утверждают, что SCC на 25% экономичнее равных по мощности атмосферных моторов. Однако лишний цилиндр — это дополнительная масса, увеличение габаритов, возрастающие потери на трение. Что-то не верится… Особенно если взять в пример новое поколение наддувных двигателей, сделанных под девизом даунсайзинга.

Кстати, для этого двигателя придумана оригинальная схема рекуперации и наддува «в одном флаконе» под названием Air-Hybrid. Во время торможения двигателем цилиндр рабочего хода отключ

Изобретатели роторного двигателя нового типа заключили контракт с DARPA / Habr

Компания LiquidPiston получила для финансирования своего проекта средства от DARPA. Проект представляет собой улучшенный мотор внутреннего сгорания роторного типа под названием X1. Во главе компании, работающей в городе Блумфилд штата Коннектикут, стоят инженеры, отец и сын, Николай и Александр Школьники.

Изобретатели заявляют множество уникальных свойств своего изделия. Например, тепловой КПД их мотора равен 50% (по сравнению с 20-30% обычного бензинового ДВС). Правда, если взять дизельный двигатель, добавить в него турбонаддув и промежуточное охлаждение, мы также получим КПД порядка 50%. Но при этом дизельный двигатель будет очень много весить.

Как утверждает Александр Школьник, типичный дизельный генератор на 3 кВт имеет размеры 100х60х60 см и весит более 70 кг. При этом генератор на основе двигателя X1 аналогичной мощности будет весить 15 кг (сам мотор – 4 кг), а размер его будет составлять 30х30 см. Фактически, такой генератор будет умещаться в рюкзаке.

Изобретатели постарались взять лучшее от разных тепловых циклов и уменьшить потери энергии двигателя. Теоретический предел КПД нового двигателя – 75%, но пока инженеры трудятся над достижением реального показателя в 57%.

Работа двигателя X1 напоминает процесс работы известного роторного двигателя Ванкеля, вывернутый наизнанку. Ротор закреплён на эксцентрическом валу, и содержит в себе каналы для впуска газовой смеси и выпуска отработавших газов. Расположенные по углам равностороннего треугольника свечи отрабатывают по разу за один оборот вала.

Двигатель работает на прямом впрыске и обеспечивает высокую степень сжатия — 18:1. Не меняющийся во время сгорания объём камеры позволяет сжигать топливо дольше и полнее. Отработавшие газы достигают почти атмосферного давления перед выходом, в связи с чем успевают отдать почти всю свою энергию ротору.

Высокая эффективность также позволяет отказаться от водяного охлаждения двигателя. Работая под нагрузкой, двигатель может пропускать циклы зажигания и засасывать воздух, который будет охлаждать его. Рассматривается даже вариант впрыска в камеру сгорания воды, которая будет охлаждать двигатель, уменьшать выбросы отработавших газов и одновременно превращаться в пар, толкающий ротор.


Слева — двигатель Ванкеля, справа — X1

Компактность и мощность двигателя заинтересовали военных, которым требуются портативные энергетические системы. В случае успешного внедрения двигатель найдёт множество применений — переносной электрогенератор, двигатель для беспилотных аппаратов, и многое другое.

Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале «Популярная механика». В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.

Вентильный реактивный электродвигатель — Википедия

Сечение ВРД с 8 статорными и 6 роторными полюсами Сечение ВРД с 6 статорными и 4 роторными полюсами

Вентильный реактивный электродвигатель (ВРД) — это бесколлекторная синхронная машина, на обмотки статора которой подаются импульсы напряжения управляемой частоты, создающие вращающееся магнитное поле. Вращающий момент возникает за счет стремления ротора к положению, при котором магнитный поток статора проходит по оси ротора, изготовленного из магнитомягкого материала, с наименьшим магнитным сопротивлением[1].

Вентильные реактивные электродвигатели/генераторы имеют следующие достоинства:

Простая конструкция

Ротор и статор выполнены в виде пакетов листового магнитомягкого материала. На роторе ВРД отсутствуют обмотки и постоянные магниты. Фазные обмотки находятся только на статоре. Для уменьшения трудоёмкости катушки обмотки статора могут изготавливаться отдельно, а затем надеваться на полюсы статора.

Высокая ремонтопригодность

Простота обмотки якоря повышает ремонтопригодность ВРД/ВРГ, т.к. для ремонта достаточно сменить вышедшую из строя катушку.

Отсутствие механического коммутатора

Управление электромеханическим преобразователем электропривода/генератора осуществляется с помощью высокоэффективных силовых полупроводниковых элементов — IGBT или MOSFET (HEXFET) транзисторов, надёжность которых существенно превышает надёжность любых механических деталей, например: коллекторов, щёток, подшипников.

Отсутствие постоянных магнитов

ВРД/ВРГ не содержит постоянных магнитов ни на роторе, ни на статоре, при этом он успешно конкурирует по характеристикам с вентильными электрическими двигателями с постоянными магнитами (ВЭДПМ). В среднем, при одинаковых электрических и весогабаритных характеристиках ВРД/ВРГ имеет в 4 раза меньшую стоимость, значительно большую надёжность, более широкий диапазон частот вращения, более широкий диапазон рабочих температур. Конструктивно, по сравнению с ВЭДПМ, ВРД/ВРГ не имеет ограничения по мощности (практически, мощность ВЭДПМ ограничивается пределом около 20-40 кВТ). ВЭДПМ требуют защиты от металлической пыли, боятся перегрева и сильных электромагнитных полей, в случае короткого замыкания обмотки превращаются в самовозгорающуюся систему. Вентильные реактивные электродвигатели/генераторы свободны от всех этих недостатков.

Малое количество меди

На изготовление ВРД/ВРГ требуется в среднем в 2-3 раза меньше меди, чем для коллекторного электродвигателя такой же мощности, и в 1,3 раза меньше меди, чем для асинхронного электродвигателя.

Tепловыделение происходит в основном только на статоре, при этом легко обеспечивается герметичная конструкция, воздушное или водяное охлаждение

В рабочем режиме не требуется охлаждение ротора. Для охлаждения ВРД/ВРГ достаточно использовать наружную поверхность статора.

Высокие массогабаритные характеристики

В большинстве случаев ВРД/ВРГ может быть выполнен с полым ротором. Толщина спинки ротора при этом должна быть не менее половины ширины полюса. Подбором количества полюсов статора и ротора могут быть оптимизированы массогабаритные характеристики электродвигателя/генератора, его мощность при заданном моменте и диапазоне частоты вращения.

Низкая трудоёмкость

Простота конструкции ВРД/ВРГ снижает трудоёмкость его изготовления. В сущности, его можно изготовить даже на не специализирующемся в области электромашиностроения промышленном предприятии. Для серийного производства ВРД/ВРГ требуется обычное механическое оборудование — штампы для изготовления шихтованных сердечников статора и ротора, токарные и фрезерные станки для обработки валов и корпусных деталей. Трудоёмкие и сложные в технологическом отношении операции, например изготовление коллектора и щёток коллекторного электродвигателя или заливка клетки ротора асинхронного двигателя, здесь отсутствуют. По предварительным оценкам трудоёмкость изготовления ЭМП вентильного реактивного электродвигателя составляет на 70% меньше трудоёмкости изготовления коллекторного и на 40% меньше трудоёмкости изготовления асинхронного электродвигателя.

Гибкость компоновки

Простота обмотки якоря и отсутствие обмотки и магнитов на роторе обеспечивает ВРД/ВРГ высокую гибкость компоновки. Конструкция электродвигателя/генератора может быть плоской, вытянутой, обращённой, секторной, линейной. Для выпуска целого типоряда электродвигателей/генераторов с различной мощностью можно использовать один и тот же комплект штампов для вырубки ротора и статора, поскольку для увеличения мощности достаточно увеличить соответственно длину набора ротора и статора. Не составляет труда изготовление машины с расположением статора как снаружи ротора, так и наоборот, а также встраивание электроники в корпус машины. Изменение коэффициента электромагнитной редукции позволяет создавать машины для облегчённых и, напротив, тяжёлых условий работы, включая моментные двигатели. Для привода некоторых рабочих машин выгоднее иметь линейные электродвигатели с возвратно-поступательным перемещением зубцового штока (аналога ротора). В ряде случаев может быть использована давно известная, но неэффективная в случае асинхронного электродвигателя конструкция дугостаторной машины, статор которой охватывает доступную для размещения дугу окружности ротора, в качестве которого может использоваться вал с зубчатым колесом.

Высокая надёжность

Простота конструкции обеспечивает ВРД/ВРГ более высокую безотказность, чем безотказность других типов электрических машин. Конструктивная и электрическая независимость фазных обмоток обеспечивает работоспособность ВРД даже в случае полного замыкания полюсной катушки одной из фаз. ВРГ остаётся работоспособным даже после выхода из строя одной или двух фаз.

Широкий диапазон частот вращения (от единиц до сотен тысяч об/мин)

Электромагнитная редукция позволяет создавать малогабаритные “моментные” электродвигатели для приводов роботов, манипуляторов и других низкооборотных механизмов или низкооборотные высокоэффективные генераторы для ветровых или волновых электростанций. В то же время частота вращения быстроходных ВРД/ВРГ может превышать 100000 об/мин.

Высокий КПД в широком диапазоне частот вращения

Практически достижимый КПД вентильного реактивного электродвигателя/генератора мощностью 1 КВт может доходить до 90 % в диапазоне 5-10-кратной перестройки частоты вращения. КПД более мощных электрических машин может достигать 95-98 %.

ВРД часто путают с синхронным реактивным электродвигателем (СРД), обмотки якоря которого питаются синусоидально изменяющимися напряжениями без обратной связи по положению ротора. СРД имеет низкий КПД, который не превышает 50 % для маломощных электродвигателей и до 70 % для мощных электрических машин.

Импульсный характер питания ЭМП обеспечивает удобную стыковку с современной цифровой электроникой

Поскольку ВРД/ВРГ питается (возбуждается) однополярными импульсами, для управления ЭМП требуется простой электронный коммутатор. Управляя скважностью импульсов силовых транзисторов электронного коммутатора можно плавно изменять форму импульсов тока фазных обмоток электродвигателя или генератора.

Электронное управление электрическими и механическими характеристиками, режимом работы

Естественная механическая характеристика ВРД/ВРГ определяется реактивным принципом действия электрической машины и близка к гиперболической форме. Основное свойство такой характеристики — постоянство мощности на валу машины — оказывается чрезвычайно полезным для электроприводов с ограниченной мощностью источника, так как при этом легко реализуется условие его неперегружаемости. Применение замкнутой системы управления с обратными связями по скорости и нагрузке позволяет получить механические характеристики любой заданной формы, включая абсолютно жёсткие (астатические), и не ведёт к какому либо усложнению системы управления, так как её процессор обладает большой избыточностью по числу входов и выходов, быстродействию и памяти. Фактически поле доступных механических характеристик непрерывным образом покрывает все четыре квадранта плоскости момент-скорость в пределах области ограничений конкретного электропривода.

Низкая стоимость электромеханического преобразователя

Стоимость ВРД оказывается самой низкой из всех известных конструкций электрических машин. Дорогостоящим в рассматриваемой системе электропривода можно считать электронный преобразователь, который является обязательным элементом всех современных регулируемых электроприводов. Однако, цены на изделия силовой электроники по мере развития масштабов производства имеют устойчивую тенденцию к снижению. Исключение из состава ВРД/ВРГ коммутационных аппаратов, для изготовления которых необходима непрерывно дорожающая медь, также способствует уменьшению стоимости.

Наконец, экономическая эффективность ВРД повышается также в результате существенно меньшего расхода электроэнергии, обусловленного высоким КПД электродвигателя и применением наиболее экономичных стратегий управления в динамических режимах работы.

Вентильные реактивные электродвигатели/генераторы имеют следующие недостатки[2]:

низкий коэффициент мощности

Он обусловлен значительной величиной намагничивающей составляющей тока статора.

низкий КПД при небольших мощностях

В реактивных двигателях мощностью в несколько десятков Вт КПД составляет 30-40%, а в двигателях мощностью до 10 Вт — не превышает 10%.

по габаритам реактивные двигатели больше синхронных и асинхронных двигателей

Это объясняется низким КПД, малым cos⁡(φ){\displaystyle \cos(\varphi )} и небольшой величиной реактивного момента.

  • Герасимов В. Г., Кузнецов Э. В., Николаева О. В. Электротехника и электроника. Кн. 2. Электромагнитные устройства и электрические машины. — М.: Энергоатомиздат, 1997. — 288 с. — ISBN 5-283-05005-X.
  • Кацман М. М., Юферов Ф. М. Электрические машины автоматических систем. — М.: Высшая школа, 1979. — 261 с.

 (недоступная ссылка)

Вентильный двигатель — Википедия

Рис. 1. Принцип работы трёхфазного вентильного двигателя

Вентильный электродвигатель (ВД)  — это разновидность электродвигателя постоянного тока, у которого щеточно-коллекторный узел (ЩКУ) заменен полупроводниковым коммутатором, управляемым датчиком положения ротора[1].

Механическая и регулировочная характеристики вентильного двигателя линейны и идентичны механической и регулировочной характеристикам электродвигателя постоянного тока. Как и электродвигатели постоянного тока, вентильные двигатели работают от сети постоянного тока. ВД можно рассматривать как двигатель постоянного тока, в котором щёточно-коллекторный узел заменён электроникой, что подчёркивается словом «вентильный», то есть «управляемый силовыми ключами» (вентилями). Фазные токи вентильного двигателя имеют синусоидальную форму. Как правило, в качестве усилителя мощности применяется автономный инвертор напряжения с широтно-импульсной модуляцией (ШИМ).

Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре и характеризуется прямоугольной формой фазных напряжений. Структура БДПТ проще, чем структура ВД (отсутствует преобразователь координат, вместо ШИМ используется 120- или 180-градусная коммутация, реализация которой проще ШИМ).

В русскоязычной литературе двигатель называют вентильным, если противо-ЭДС управляемой синхронной машины синусоидальная, а бесколлекторным двигателем постоянного тока, если противо-ЭДС трапецеидальная.

В англоязычной литературе такие двигатели обычно не рассматриваются отдельно от электропривода и упоминаются под аббревиатурами PMSM (Permanent Magnet Synchronous Motor) или BLDC (Brushless Direct Current Motor). Стоит отметить, что аббревиатура PMSM в англоязычной литературе чаще используется для обозначения самих синхронных машин с постоянными магнитами и с синусоидальной формой фазных противо-ЭДС, в то время как аббревиатура BLDC аналогична русской аббревиатуре БДПТ и относится к двигателям с трапецеидальной формой противо-ЭДС (если иная форма не оговорена специально).

Вообще говоря, вентильный двигатель не является электрической машиной в традиционном понимании, поскольку его проблематика затрагивает ряд вопросов, связанных с теорией электропривода и систем автоматического управления: структурная организация, использование датчиков и электронных компонентов, а также программное обеспечение.

Вентильные двигатели, сочетающие в себе надёжность машин переменного тока с хорошей управляемостью машин постоянного тока, являются альтернативой двигателям постоянного тока, которые характеризуются рядом изъянов, связанных со ЩКУ, таких как искрение, помехи, износ щёток, плохой теплоотвод якоря и пр. Отсутствие ЩКУ позволяет применять ВД в тех приложениях, где использование ДПТ затруднено или невозможно.

Рис. 2. Структура двухфазного вентильного двигателя с синхронной машиной с постоянными магнитами на роторе. ПК — преобразователь координат, УМ — усилитель мощности,
СЭМП — синхронный электромеханический преобразователь (синхронная машина), ДПР — датчик положения ротора.

Двигатель состоит из постоянного магнита-ротора, вращающегося в магнитном поле катушек статора, по которым проходит ток, коммутируемый ключами (вентилями), управляемыми микроконтроллером. Микроконтроллер переключает катушки таким образом, чтобы взаимодействие их поля с полем ротора создавало крутящий момент при любом его положении.

На входы преобразователя координат (ПК) поступают напряжения постоянного тока uq{\displaystyle u_{q}}, действие которого аналогично напряжению якоря двигателя постоянного тока, и ud{\displaystyle u_{d}}, аналогичное напряжению возбуждения двигателя постоянного тока (аналогия действует при рассмотрении схемы независимого возбуждения двигателя постоянного тока).

Сигналы ud,uq{\displaystyle u_{d},u_{q}}, представляют собой проекции вектора напряжения управления Uy→={ud,uq}{\displaystyle {\vec {U_{y}}}=\{u_{d},u_{q}\}} на оси вращающейся системы координат {d,q}{\displaystyle \{d,q\}}, связанной с ротором ВД (а точнее — с вектором потока ротора). Преобразователь координат осуществляет преобразование проекций ud,uq{\displaystyle u_{d},u_{q}} в проекции uα,uβ{\displaystyle u_{\alpha },u_{\beta }} неподвижной системы координат {α,β}{\displaystyle \{\alpha ,\beta \}}, связанной со статором.

Как правило, в системах управления электропривода задаётся ud=0{\displaystyle u_{d}=0}[3], при этом уравнения преобразования координат принимают вид[4]:

uα=−uq⋅sin⁡θ,{\displaystyle u_{\alpha }=-u_{q}\cdot \sin {\theta },}

uβ={\displaystyle u_{\beta }=} uq⋅cos⁡θ,{\displaystyle u_{q}\cdot \cos {\theta },}

где θ{\displaystyle \theta } — угол поворота ротора (и системы вращающихся координат) относительно оси α{\displaystyle \alpha } неподвижной системы координат. Для измерения мгновенного значения угла θ{\displaystyle \theta } на валу ВД устанавливается датчик положения ротора (ДПР).

По сути, uq{\displaystyle u_{q}} является в этом случае заданием значения амплитуды фазных напряжений. А ПК, осуществляя позиционную модуляцию сигнала uq{\displaystyle u_{q}}, формирует гармонические сигналы uα,uβ{\displaystyle u_{\alpha },u_{\beta }}, которые усилитель мощности (УМ) преобразует в фазные напряжения uA,uB{\displaystyle u_{A},u_{B}}. Синхронный двигатель в составе вентильного двигателя часто называют синхронным электромеханическим преобразователем (СЭМП).

Как правило, электронная часть ВД коммутирует фазы статора синхронной машины так, чтобы вектор магнитного потока статора был ортогонален вектору магнитного потока ротора (т. н. векторное управление). При соблюдении ортогональности потоков статора и ротора обеспечивается поддержание максимального вращающего момента ВД в условиях изменения частоты вращения, что предотвращает выпадение ротора из синхронизма и обеспечивает работу синхронной машины с максимально возможным для неё КПД. Для определения текущего положения потока ротора вместо датчика положения ротора могут использоваться токовые датчики (косвенное измерение положения).

Электронная часть современного ВД содержит микроконтроллер и транзисторный мост, а для формирования фазных токов используется принцип широтно-импульсной модуляции (ШИМ). Микроконтроллер отслеживает соблюдение заданных законов управления, а также производит диагностику системы и её программную защиту от аварийных ситуаций.

Иногда датчик положения ротора отсутствует, а положение оценивается системой управления по измерениям токовых датчиков с помощью наблюдателей (т. н. «бездатчиковое» управление ВД). В таких случаях за счёт удаления дорогостоящего и зачастую громоздкого датчика положения уменьшается цена и массо-габаритные показатели электропривода с ВД, однако усложняется управление, снижается точность определения положения и скорости.

В приложениях средней и большой мощности в систему могут дополнительно включаться электрические фильтры для смягчения негативных эффектов ШИМ: перенапряжений на обмотках, подшипниковых токов и снижения КПД. Впрочем, это характерно для всех типов двигателей.

Вентильные двигатели призваны объединить в себе лучшие качества двигателей переменного тока и двигателей постоянного тока. Это обусловливает их достоинства.

Достоинства:

  • Широкий диапазон изменения частоты вращения
  • Бесконтактность и отсутствие узлов, требующих частого обслуживания (коллектора)
  • Возможность использования во взрывоопасной и агрессивной среде
  • Большая перегрузочная способность по моменту
  • Высокие энергетические показатели (КПД выше 90 %)
  • Большой срок службы и высокая надёжность за счёт отсутствия скользящих электрических контактов.

Вентильные двигатели характеризуются и некоторыми недостатками, главный из которых — высокая стоимость. Однако, говоря о высокой стоимости, следует учитывать и тот факт, что вентильные двигатели обычно используются в дорогостоящих системах с повышенными требованиями по точности и надёжности.

Недостатки:

  • Высокая стоимость двигателя, обусловленная частым использованием дорогостоящих постоянных магнитов в конструкции ротора. Стоимость электропривода с ВД, однако, сопоставима со стоимостью аналогичного электропривода на основе ДПТ с независимым возбуждением (регулировочные характеристики такого двигателя и ВД сопоставимы). Вообще говоря, в вентильном двигателе может быть использован и ротор с электромагнитным возбуждением, однако это сопряжено с комплексом практических неудобств. В ряде случаев предпочтительным оказывается применение асинхронного двигателя с преобразователем частоты.
  • Относительно сложная структура двигателя и управление им.

Конструктивно современные вентильные приводы состоят из электромеханической части (синхронной машины и датчика положения ротора) и из управляющей части (микроконтроллер и силовой мост).

Упоминая о конструкции ВД, полезно иметь в виду и неконструктивный элемент системы — программу (логику) управления.

Синхронная машина, используемая в ВД, состоит из шихтованного (собранного из отдельных электрически изолированных листов электротехнической стали — для снижения вихревых токов) статора, в котором расположена многофазная (обычно двух- или трёхфазная) обмотка, и ротора (обычно на постоянных магнитах).

В качестве датчиков положения ротора в БДПТ применяются датчики Холла, а в ВД — вращающиеся трансформаторы и накапливающие датчики. В т. н. «бездатчиковых» системах информация о положении определяется системой управления по мгновенным значениям фазных токов.

Информация о положении ротора обрабатывается микропроцессором, который, согласно программе управления, вырабатывает управляющие ШИМ-сигналы. Низковольтные ШИМ-сигналы микроконтроллера затем преобразуются усилителем мощности (обычно транзисторным мостом) в силовые напряжения, подаваемые на двигатель.

Совокупность датчика положения ротора и электронного узла в ВД и БДПТ можно с определённой долей достоверности сравнить с щёточно-коллекторным узлом ДПТ. Однако следует помнить, что двигатели редко применяются вне электропривода. Таким образом, электронная аппаратура характерна для ВД почти в той же степени, что и для ДПТ.

Статор[править | править код]

Статор имеет традиционную конструкцию. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки, уложенной в пазы по периметру сердечника. Обмотка разбита на фазы, которые уложены в пазы таким образом, что пространственно сдвинуты друг относительно друга на угол, определяемый числом фаз. Известно, что для равномерного вращения вала двигателя машины переменного тока достаточно двух фаз. Обычно синхронные машины, применяемые в ВД, трёхфазные, однако встречаются также и ВД с четырёх- и шестифазными обмотками.

Ротор[править | править код]

По расположению ротора вентильные двигатели делятся на внутрироторные (англ. inrunner) и внешнероторные (англ. outrunner).

Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до шестнадцати пар полюсов с чередованием северного и южного полюсов.

Для изготовления ротора раньше использовались ферритовые магниты, что определялось их распространённостью и дешевизной. Однако такие магниты характеризуются низким уровнем магнитной индукции. В настоящее время интенсивно используются магниты из сплавов редкоземельных элементов, поскольку они позволяют получить более высокий уровень магнитной индукции и уменьшить размер ротора.

Датчик положения ротора[править | править код]

Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрическом, индуктивном, трансформаторном, на эффекте Холла и проч. Наибольшую популярность приобрели датчики Холла и фотоэлектрические датчики, обладающие низкой инерционностью и обеспечивающие малые запаздывания в канале обратной связи по положению ротора.

Обычно фотоэлектрический датчик содержит три неподвижных фотоприёмника, между которыми находится вращающаяся маска с рисками, жёстко закреплённая на валу ротора ВД. Таким образом, ДПР обеспечивает информацию о текущем положении ротора ВД для системы управления.

Система управления[править | править код]

Система управления содержит микроконтроллер, контролирующий силовой инвертор согласно заданной программе управления. В качестве силовых ключей инвертора обычно применяют транзисторы MOSFET (ВД малых и средних мощностей) или IGBT (ВД средних и больших мощностей), реже тиристоры.

Основываясь на информации, полученной от ДПР, микроконтроллер формирует ШИМ-сигналы, которые усиливаются инвертором и подаются на обмотку синхронной машины.

Благодаря высокой надёжности и хорошей управляемости, вентильные двигатели применяются в широком спектре приложений: от компьютерных вентиляторов и CD/DVD-приводов до роботов и космических ракет.

Широкое применение ВД нашли в промышленности, особенно в системах регулирования скорости с большим диапазоном и высоким темпом пусков, остановок и реверса; авиационной технике, автомобильном машиностроении, биомедицинской аппаратуре, бытовой технике и пр. Также, этот тип двигателей часто используется в двигателях квадрокоптеров.

  • Герасимов В. Г., Кузнецов Э. В., Николаева О. В. Электротехника и электроника. Кн. 2. Электромагнитные устройства и электрические машины. — М.: Энергоатомиздат, 1997. — 288 с. — ISBN 5-283-05005-X.
  1. Герман-Галкин С. Г. Глава 9. Модельное проектирование синхронных мехатронных систем // Matlab & Simulink. Проектирование мехатронных систем на ПК.. — СПб.: КОРОНА-Век, 2008. — 368 с. — ISBN 978-5-903383-39-9.
  2. Борцов Ю.А., Соколовский Г.Г. Глава 8. Адаптивно-модальное управление в следящих системах с бесконтактными моментными двигателями // Автоматизированный электропривод с упругими связями. — 2-ое изд., перераб. и доп.. — СПб: Энергоатомиздат, 1992. — 288 с. — ISBN 5-283-04544-7.
  3. Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием. — М.: «Академия», 2006. — 272 с. — ISBN 5-7695-2306-9.
  4. Микеров А.Г. Управляемые вентильные двигатели малой мощности: Учебное пособие.. — СПб: СПбГЭТУ, 1997. — 64 с.

Роторный двигатель достоинства и недостатки

Роторный двигатель достоинства и недостатки

В этой статье Вы узнаете достоинства и недостатки роторных двигателей. Кроме того рассмотрим автомобили на которые устанавливался роторный двигатель.

Первый кто придумал роторный двигатель внутреннего сгорания это Феликс Ванкель. Именно поэтому нередко этот двигатель ассоциируется с ним и носит его имя. Первый роторный двигатель заработал в уже 1958 году. Но большинство автопроизводителей так и не решились устанавливать роторный двигатель на свои автомобили.

Единственный кто решился на массовое производство автомобилей с роторным двигателем это Mazda. Один из таких автомобилей RX 8. Советские инженеры тоже создали некоторое ограниченное количество автомобилей с роторным двигателем. Но об этом немного позже.

Вероятней всего от роторных двигателей отказались из-за низкого ресурса. Ресурс роторного двигателя в силу конструкции редко превышает 100 тысяч.км.

Устройство

Принцип работы роторного двигателя схож с поршневым двигателем. Также работа двигателя состоит из 4 тактов. Впуск, сжатие, воспламенение и выпуск. Но есть серьезные отличия у роторного двигателя отсутствует ГРМ, поршни, шатуны, коленвал. Так как в них необходимости.

Цилиндр в роторном двигателе выполнен в овальной форме. Роль поршня выполняет ротор который, имеет треугольную форму. Он же выполняет и роль ГРМ так как в зависимости от момента вращения, то открывает впускное окно для подачи воздуха, то закрывает. Также присутствует выпускное окно через которое выводятся выхлопные газы. Топливо в роторном одно секционном двигателе воспламеняется двумя свечами зажигания.

Достоинства

1) Более высокий КПД в районе 40 %. Это происходит за счёт того, что за одно вращение происходит 3 цикла работы.

2) Более простая конструкция за счёт отсутствия многих деталей которые присуще поршневому двигателю.

3) Более лёгкий вес.

4) Роторный двигатель высок оборотистый его можно раскручивать более 10 000 об/мин. Редко какой поршневой двигатель сможет похвастаться такими высокими оборотами.

5) Более мягкая работа и отсутствие вибраций, так как ротор постоянно движется в одном направлении.

К сожалению роторный двигатель не лишён недостатков.

Недостатки

1) Автомобили с роторным двигателем расходуют больше топлива чем его поршневые собратья.

2) Роторный двигатель менее экологичен.

3) Трудоемкий ремонт. Зачастую ротор приходится менять целиком.

4) Низкий ресурс около 100 тыс.км

Некоторые автомобили с роторным двигателем

1) Mazda RX 8

Компания Mazda одна из немногих кто живо занимался усовершенствованием роторного двигателя вплоть до 21 века. Им удалось достичь немалого прогресса. Двигатель с мизерным объемом 1,3 литра выдавал 215 л.с. Был и еще более мощный вариант с 231 л.с таким же объемом. Это харизматичное заднеприводное купе стало представителем автомобилей с роторным двигателем. К сожалению продажи начали падать поэтому в Августе 2011 года производство автомобилей Mazda RX-8 были вынуждены закрыть.

2) Ваз 2109-90

В России был создан образец с роторным двигателем характеристики которого на тот момент были впечатляющими. Этот двигатель устанавливался на полицейские автомобили. Роторный двигатель на ваз 2109 выдавал 140 л.с благодаря этому мотору разгон до 100 км/ч занимал всего 8 секунд, а максимальная скорость составляла 200 км/ч. Из-за высокой стоимости агрегата и его невысокой надежности автомобили не прижились. Были и более мощные образцы, но их ресурс оставлял желать лучшего. Тем не менее этот автомобиль отлично выполнял роль догонялки и мог обогнать любой советский автомобиль, даже многие не спортивные иномарки.

3)Mercedes C111

Mercedes C111 показался публике в Женеве в 1970 году. На этот автомобиль устанавливался трех-секционный роторный двигатель объемом 1,8 литра, который имел 280 л.с. При этом разгон до первой сотни занимал всего 5 сек. Максимальная скорость 275 км/ч.

4)Ваз 21019 Аркан

С виду ваз 21011, но внутри располагался ваз-411 это двух-секционный роторный двигатель который выдавал мощность 120 л.с. Максимальная скорость такого автомобиля была 160 км/ч. На практике скорее всего больше. Несомненно в советское время укрыться от такого автомобиля было не просто.

Итог

Роторный двигатель очень хорош для гонок так как он высок оборотистый и обладает хорошей мощность при этом обладает более легким весом и занимает меньше места под капотом. Для гонок ресурс двигателя не является самым важным показателем. Если увеличить ресурс, экономичность и экологичность роторного двигателя, то он будет устанавливаться на автомобили гораздо чаще.

dr]ems украина отслеживание

Оставить ответ