Регулировка ускорительного насоса к 151: Проверка работы ускорительного насоса карбюратора К-151, схема

Содержание

Проверка работы ускорительного насоса карбюратора К-151, схема

Проверку работы ускорительного насоса карбюратора К-151 удобнее всего производить при снятой крышке поплавковой камеры. Хотя при наличии хорошего направленного освещения ее можно осуществить, не разбирая карбюратора. 

Проверка работы ускорительного насоса карбюратора К-151, схема, проверка и регулировка производительности ускорительного насоса карбюратора.

Признаком исправности ускорительного насоса карбюратора К-151 является наличие не искривленной струи топлива, выходящей из распылителя ускорительного насоса при резком открытии дроссельных заслонок и заполненной топливом поплавковой камере. При этом после нескольких качков, необходимых для заполнения рабочей полости насоса, при каждом перемещении рычага из распылителя должна выходить ровная, не попадающая на стенки большого и малого диффузоров струя топлива.

Общая схема карбюратора К-151 для двигателя ЗМЗ-402, К-151Д для двигателя ЗМЗ-406, К-151Т для двигателя УМЗ-4215.

Нарушение формы и направления струи распылителя ускорительного насоса карбюратора К-151 свидетельствует о частичном засорении распылителя. В момент качка из дренажного отверстия у дна поплавковой камеры должна выходить небольшая струя топлива. Ее можно наблюдать на снятом с двигателя карбюраторе без крышки поплавковой камеры и поплавка. Для этого наклонить его так, чтобы дренажное отверстие слегка обнажилось.

Схема ускорительного насоса карбюратора К-151.

При отсутствии струи топлива из распылителя ускорительного насоса убедитесь в исправности нагнетательного клапана в винте крепления распылителя и чистоте его отверстия. А также в чистоте отверстия распылителя. При отсутствии положительного результата разберите диафрагменный механизм ускорительного насоса. Промойте его полость и продуйте все отверстия каналов ускорительного насоса струей сжатого воздуха.

Прочистить отверстие распылителя ускорительного насоса карбюратора К-151 можно отрезком медной или даже стальной проволоки диаметром 0,3 мм. Иногда бывает необходимо прочистить иглой, проволокой или даже сверлом диаметром 1,5 мм подводящий канал в корпусе распылителя со стороны отверстия его крепления.

Проверка и регулировка производительности ускорительного насоса карбюратора К-151.

Проверить и при необходимости отрегулировать производительность ускорительного насоса карбюратора К-151 можно только на снятом с двигателя карбюраторе. Для этого необходимо заполненный топливом карбюратор установить над воронкой с мензуркой. Затем выполнить следующие действия:

— Полностью открыть дроссельные заслонки. Удержать их 3-5 секунд в открытом положении.
— Затем закрыть на 1-2 секунды и вновь открыть.
— Повторить эти операции 10 раз подряд.

Объем собранного в мензурке топлива должен приблизительно (за вычетом потерянного и испарившегося топлива) соответствовать табличным данным, приводимым в технической характеристике карбюратора.

При значительном несоответствии полученного результата табличным данным можно попытаться скорректировать производительность ускорительного насоса карбюратора К-151, вращая регулировочную иглу на жиклере дренажного канала ускорительного насоса. При заворачивании иглы производительность увеличивается. А при отворачивании — уменьшается.

По материалам книги «Карбюратор К-151, устройство, ремонт, регулировка».
А.С. Тюфяков.

Похожие статьи:

  • Когда делать капитальный ремонт двигателя, признаки естественного износа двигателя, методы капитального ремонта классических двигателей внутреннего сгорания.
  • Регулировка поплавкового механизма карбюраторов К-151, увеличение и уменьшение уровня топлива в поплавковой камере.
  • Колесные диски, типы, преимущества и недостатки, параметры, маркировка, проверка радиального и бокового биения колесного диска.
  • Тюнинговые карбоновые, кевларовые и металлокерамические сцепления, основные свойства, преимущества и недостатки использования.
  • Как выбрать правильный антифриз, гибридный, карбоксилатный и лобридный антифризы, обозначение и свойства, кавитация или кавитационная эрозия.
  • Проверка свечей зажигания, регулировка зазоров между электродами, восстановление работоспособности свечей, извлечение обломавшейся свечи, восстановление резьбы.

Как отрегулировать карбюратор К-151

Регулировка карбюратора К-151, К-151Д

Регулировку уровня топлива в поплавковой камере производят при снятой крышке карбюратора

Однако можно, не отсоединяя тягу пускового механизма, отвернуть винты крепления крышки, приподнять ее и, вынув прокладку, повернуть крышку в сторону, насколько это позволят сделать зазоры в местах крепления тяги.

 Подкачивать бензин в поплавковую камеру рычагом ручной подкачки топливного насоса до момента, когда уровень стабилизируется.

Расстояние от уровня топлива до верхней плоскости корпуса карбюратора должно составлять 21,5 мм.

При уровне топлива ниже указанного необходимо подогнуть вверх язычок 1 поплавка, упирающийся в хвостовик иглы запорного клапана.

При повышенном уровне язычок подогнуть вниз.

После каждой подгибки язычка нужно, отвернув сливную пробку поплавковой камеры, слить из нее бензин и, завернув пробку на место, повторно накачать бензин рычагом ручной подкачки топливного насоса

Отрегулировать пусковую систему можно непосредственно на автомобиле, полностью прогрев двигатель и подключив к нему тахометр.

Запустив двигатель со снятым воздушным фильтром и слегка нажав на педаль акселератора, полностью закрыть воздушную заслонку рукояткой ее привода.

Затем лезвием отвертки приоткрыть воздушную заслонку настолько, насколько это позволит рычажный механизм.

Частота вращения коленчатого вала двигателя при этом должна составлять 2500–2700 мин –1 .

Если она отличается от указанной, нужно, ослабив контргайку на регулировочном винте, упирающемся в профильный рычаг, заворачивать или выворачивать этот винт

После окончания регулировки контргайку плотно затянуть.

3. Регулируют систему холостого хода на прогретом двигателе с подключенным к нему тахометром.

Для этого на работающем двигателе установить винт качества 2 в положение, при котором обеспечивается максимальная частота вращения на холостом ходу.

Затем с помощью винта количества 1 установить частоту, повышенную на 100–120 мин –1 .

После этого завернуть винт качества до снижения частоты вращения на 100–120 мин –1 .

Такой способ регулировки позволяет уложиться в нормы токсичности выхлопа.

Однако более точную регулировку рекомендуется проводить с помощью газоанализатора.

Проверка

Проверяют работу ускорительного насоса при снятой крышке карбюратора после регулировки уровня топлива.

При резком открытии дроссельных заслонок из распылителя ускорительного насоса должна выходить ровная сильная струя бензина, достигающая каналов корпуса дроссельных заслонок без касания стенок диффузоров.

Неравномерная и искривленная струя свидетельствует о частичном засорении каналов распылителя.

При полном отсутствии струи следует убедиться в чистоте и исправности топливоподводящего винта распылителя и расположенного в нем нагнетательного клапана.

При их исправности следует проверить чистоту и исправность диафрагменного механизма ускорительного насоса, разобрав его, как это описывалось выше.

Регулировка карбюратора к151с на 402 двигатель


Хитрости регулировки карбюратор к 151 на УАЗе

УАЗ – это легендарный автомобиль, который прославился не только среди военных, но и гражданского населения. Завод действительно не пожалел сил и времени на него. Он надежный, прост в обслуживании и ремонте, но требует постоянного внимания, так как является «рассадником» неполадок. Одним из больных мест является система питания. Регулировка такого сложного узла, как карбюратор К151 на УАЗе «Буханка» – не сложная процедура. Однако она требует правильной техники выполнения. Сегодня вы узнаете, как выполняется чистка и настройка, а также регулировка карбюратора к 151 на уазе.

Устройство карбюратора К 151

Карбюратор К 151 «Пекар» работает по той же схеме, что и аналогичные карбюраторы. Неизменной всегда остается задача по приготовлению топливовоздушной смеси с последующей подачей в цилиндры двигателя.

Конструктивно карбюратор состоит из следующих элементов:

  • Поплавковая камера;
  • Дроссельная заслонка;
  • Жиклеры;
  • Диафрагма;
  • Металлический корпус с крышкой;
  • Регулировочные винты.

В случае неисправности, карбюратор начинает работать некорректно. Это означает, что УАЗ в нашем случае «Буханка» начинает потреблять слишком много топлива или развивает не полную мощность. Бывают случаи, что двигатель может совсем не завестись. Чтобы устранить эту проблему, карбюратор нужно снять, осмотреть и настроить.

Схема карбюратора К 151

Пояснение к схеме:

  1. крышка;
  2. клапан разбалансированности поплавковой камеры;
  3. поплавок;
  4. воздушный жиклер переходной системы;
  5. эмульсионный жиклер переходной системы;
  6. винт крепления распылителя эконостата вторичной секции;
  7. воздушный жиклер главной дозирующей системы вторичной секции;
  8. распылитель эконостата;
  9. эмульсионная трубка главной дозирующей системы вторичной секции;
  10. выпускной шариковый клапан ускорительного насоса;
  11. распылитель ускорительного насоса;
  12. воздушная заслонка;
  13. малый диффузор первичной секции;
  14. воздушный жиклер главной дозирующей системы первичной секции;
  15. эмульсионная трубка главной дозирующей системы первичной секции;
  16. блок воздушного жиклера с эмульсионной трубкой системы холостого хода;
  17. эмульсионный жиклер системы холостого хода;
  18. воздушный жиклер холостого хода;
  19. регулировочный винт перепуска топлива системы ускорительного насоса;
  20. вытеснитель;
  21. корпус поплавковой камеры;
  22. перепускной жиклер ускорительного насоса;
  23. выпускной шариковый клапан ускорительного насоса;
  24. пружина;
  25. диафрагма ускорительного насоса;
  26. крышка ускорительного насоса;
  27. рычаг привода ускорительного насоса;
  28. главный топливный жиклер первичной секции;
  29. трубка;
  30. диафрагмы экономайзера принудительного холостого хода;
  31. клапан экономайзера;
  32. ограничительный колпачок;
  33. винт регулировочный состава смеси;
  34. отверстие в корпусе ЭПХХ;
  35. корпус экономайзера принудительного холостого хода;
  36. отверстие выходное системы холостого хода;
  37. винт эксплуатационной регулировки холостого хода;
  38. прокладки;
  39. отверстия переходные системы холостого хода;
  40. дроссельная заслонка первичной секции;
  41. кулачок привода рычага ускорительного насоса;
  42. ролик рычага ускорительного насоса;
  43. обводной канал системы холостого хода;
  44. дроссельная заслонка вторичной секции;
  45. прокладки;
  46. корпус смесительных камер;
  47. трубка подвода разрежения к электромагнитному клапану;
  48. трубка к вакуум-корректору;
  49. главный топливный жиклер вторичной секции;
  50. штуцер вентиляции картерных газов;
  51. электронный блок управления;
  52. микровыключатель;
  53. фильтр;
  54. электромагнитный клапан;
  55. штуцер;
  56. топливный фильтр;
  57. топливо подающая труба;
  58. пробка;
  59. язычок регулировки хода топливного клапана;
  60. топливный клапан;
  61. язычок регулировки уровня топлива в поплавковой камере;
  62. электропривод клапана разбалансировки поплавковой камеры.

Как снять карбюратор К 151 «Пекар» на УАЗе?

Для этого нужно зайти в салон автомобиля на водительское или пассажирское место спереди и открыть люк моторного отсека. Следующим этапом нужно снять воздушный фильтр. Для этого вначале откручиваются верхние гайки крепления, после чего, снимается сам фильтрующий элемент. Будьте осторожны и не уроните гайки в диффузор!

Теперь выкрутите гайки крепления корпуса фильтра. Поднимите ее вверх, отсоедините тонкий шланг и отложите корпус в сторону. Теперь отсоедините все тяги, связанные с дроссельной заслонкой. Чтобы не сломать пластиковые элементы, рекомендуется воспользоваться плоской отверткой.

Выкрутите крепления всех шлангов, удерживающих агрегат, и снимите их. Останутся четыре гайки, которые удерживают карбюратор на коллекторе. Открутите их и снимите агрегат.

Остались вопросы по снятию? Смотрим это видео:

Чистка карбюратора УАЗ

Перед настройкой, необходимо узел почистить. Для этого полностью разберите карбюратор: снимите верхнюю крышку и отделите дроссельную часть от диффузора.

Чистка производится при помощи специальных средств для очистки дроссельных заслонок или любой другой жидкости, предназначенной для этих целей. Также можно использовать бензин или керосин.

Чистка необходима 100%. Это избавит вас от проблем, связанных с загрязнением, и снимет необходимость делать это в ближайшее время. Поэтому выполнить ее нужно, чтобы выполнить профилактику неисправности.

Как регулировать уровень топлива в поплавковой камере

После сборки карбюратора нужно настроить уровень в поплавковой камере. Это то самое место, от которого зависит расход топлива автомобиля УАЗ «Буханка». Отрегулировать его можно своими руками в гараже. Для этого карбюратор устанавливается на штатное место, затягивается гайками, а верхняя крышка откручивается и просто прижимается рукой. Вставьте топливный шланг и подкачайте бензин при помощи ручного привода бензонасоса.

Уровень топлива в поплавковой камере

Теперь нужно поднять крышку и отложить в сторону, а при помощи линейки замерить уровень в камере. Он должен составлять 21 миллиметр. Если параметр отличается от номинального значения, то нужно выставить положение поплавка, при котором уровень всегда будет поддерживаться на заданном уровне, а игольчатый клапан будет в закрытом положении.

Чтобы это сделать, нужно:

  • Отогнуть регулировочные тяги поплавка;
  • Поставить крышку на место;
  • Повторить проверку уровня.

Цикл выполняется до тех пор, пока уровень в поплавковой камере не будет соответствовать норме. Кстати, посмотреть подробно, как это сделать можно и на видео. После того, как уровень станет номинальным, необходимо карбюратор собрать. На него устанавливаются все навесные элементы, кроме воздушного фильтра и его корпуса. Он будет мешать при регулировке привода воздушной заслонки. Монтаж производится в обратной последовательности.

Как отрегулировать воздушную заслонку карбюратор К-151?

Чтобы завести УАЗик в холодное время, нужно использовать пусковое устройство, которое представляет собой ручной привод воздушной заслонки. Суть такая, что при холодном пуске, необходимо вытащить рукоятку на себя, тем самым закрыть заслонку, и заводить двигатель. По мере прогрева рукоятку нужно постепенно возвращать в исходное положение.

Теперь нужно отрегулировать такое положение троса, при котором заслонка будет полностью открываться, и закрываться без заеданий. Для этого, полностью вытащите рукоятку на карбюраторном автомобиле и закройте заслонку вручную. Зафиксируйте положение троса, как  на видео, и затяните гайку. Попробуйте открыть и закрыть заслонку. Система должна работать точно без заеданий. После этого можно приступать к настройке холостого хода.

Регулировка холостого хода карбюратора на УАЗе

К 151 «Пекар» не имеет винта качества, как его приемник ДААЗ 4178. Автомобиль не предусматривает установки тахометра, поэтому подключить его нужно будет самостоятельно на время выполнения работ. Теперь запустите мотор и прогрейте его до рабочей температуры.

Следующий порядок действий таков:

  • Как на видео, при помощи винта количества и винта регулировки дроссельной заслонки, выставите нужные обороты холостого хода.
  • Несмотря на отсутствие винта качества, система предусматривает обогащение и обеднение смеси путем регулировки количества подаваемого воздуха. Для этого установлен механизм регулировки положения дроссельной заслонки.
  • После того, как обороты составят 800-900 об/мин, необходимо винт качества закручивать до того момента, когда двигатель начнет немного поддергивать. Такой режим является самым экономичным и оптимальным, с точки зрения сохранения мощности и убережет от неисправности, связанной с запуском.

Остались вопросы по регулировке холостого хода? Тогда посмотрите этот видео материл поможет их развеять!

Схема снижения расхода на карбюраторе к-151

Расположение и обозначение жиклеров карбюратора к-151

В первую очередь нужно закупорить шланг, который идет от крышки клапанов в нижней части карбюратора после этих действий холостой ход станет стабильным.

Порядок действий по снижению расхода топлива на карбюраторе к 151:

  1. Требуется подогнать воздушные и топливные жиклёры.
  2. Провести настройку зажигания на грань детонации.
  3. Правильно отрегулировать холостой ход.

Большим винтом крутим примерно положенное количество оборотов.

Малый винт — крутите в обе стороны до достижения максимума оборотов.

Большой — количество

Малый – качество

После большим винтом понижаете обороты — не многим больше положенных ± 100. И выравниваете до нужного количества маленьким винтом.

Вот так выполняется снятие, установка и настройка карбюратора К 151 на УАЗе. Как видите, в этой процедуре нет ничего сложного и справиться с ней сможет любой начинающий водитель. Желаем удачи на дорогах!

prokarbyrator.ru

регулировка, устройство и принцип работы

К151С – карбюратор, разработанный и изготовленный на заводе «Пекар» (бывшем Ленинградском карбюраторном заводе). Эта модель является одной из модификаций 151 линейки карбюраторов названного производителя. Данные агрегаты созданы для работы с двигателем ЗМЗ-402 и различными модификациями этих ДВС. После некоторых доработок и модернизаций К151С (карбюратор нового поколения) мог работать с такими моторами, как ЗМЗ-24Д, ЗМЗ-2401, УМЗ-417 и многими другими агрегатами подобной конструкции.

Данное устройство укомплектовано большинством современных систем и механизмов, призванных улучшить технические и рабочие, а также экологические характеристики. Рассмотрим конструкцию аппарата, принцип действия, способы ремонта и регулировки.

Конструкция

К151С – карбюратор, который оснащен двумя дозирующими устройствами в первой и второй топливных камерах. Также эта модель укомплектовывается системой холостого хода, полуавтоматической системой запуска, экономайзером. В конструкции предусмотрен ускорительный насос, который распыляет топливо в первую и вторую камеры. Наряду с другими системами, имеется ЭПХХ с пневмоприводом и электронным управлением.

В чем особенность бесступенчатой системы полуавтоматического запуска? Благодаря ей больше не нужно давить на педаль газа для запуска холодного мотора.

Агрегат имеет два вертикальных канала для воздуха. В нижней их части находится дроссельная заслонка. Эти каналы называют камерами карбюратора. Дроссельная заслонка и ее привод созданы таким образом, что по мере нажатия на акселератор вначале открывается один контур, а затем другой. Это и есть двухкамерный карбюратор. Контур, заслонка которого открывается первой, называется первичным. Соответственно, дальше идет вторичная камера.

В средней части главных каналов для прохода воздуха установлены специальные сужения конусообразной формы. Это диффузоры. За счет них образуется разряжение. Оно необходимо, чтобы в процессе движения воздуха был подсос топлива из поплавковой камеры карбюратора. Чтобы устройство могло нормально функционировать и готовить оптимальную смесь, уровень бензина в камере постоянно поддерживается. Это производится с помощью поплавкового механизма и игольчатого клапана.

Как устроен карбюратор К 151? К151С состоит из трех главных частей. Верхняя является крышкой корпуса. На ней установлены фланец и шпильки, устройство для вентиляции поплавковой камеры, а также детали пусковой системы.

Средняя часть – это непосредственно корпус агрегата. Здесь находится поплавковая камера, поплавковый механизм, топливоподводящие системы. В нижней части установлены дроссельные заслонки и их корпуса, устройство холостого хода.

Главная дозирующая система

Этих систем две. Они имеют одинаковую конструкцию. Системы оснащены топливными жиклерами. Их читатель может увидеть на фото ниже.

Главный жиклер устанавливаются на верхней части корпуса. Если быть точнее, то в районе эмульсионных колодцев. Под воздушными жиклерами имеются 2 эмульсионных трубки.

В стенках эмульсионных колодцев предусмотрены отверстия, которые соединены с выходными распылителями. За счет разрежения в зоне отверстий распылителей горючее поднимается по эмульсионным колодцам. Далее оно проходит до отверстий в трубках. Затем топливо смешивается с воздухом в центральной части трубок. После этого оно уходит через боковые каналы к распылителям. Там горючее смешивается с основным воздухом.

Система холостого хода

Она нужна для обеспечения стабильной работы двигателя на холостых оборотах. Система состоит из нескольких элементов:

  1. Обводного канала.
  2. Винтов, с помощью которых осуществляется регулировка карбюратора К151С.
  3. Топливного и воздушного жиклеров.
  4. Клапана экономайзера.

Ускорительный насос

Он позволяет двигателю работать стабильно на всем диапазоне, без провалов при резком нажатии на педаль акселератора.

Насос представляет собой дополнительные каналы в корпусе карбюратора, шариковый клапан, мембранный механизм и распылитель.

Эконостат

Эта система необходима для повышения стабильности работы силового агрегата на высоких оборотах за счет обогащения топливной смеси. Это несколько дополнительных каналов, через которые за счет большого разрежения при полностью открытых заслонках поступает дополнительное топливо.

Переходная система

Она необходима для того, чтобы обороты двигателя в момент открытия дросселя вторичной камеры могли увеличиваться более плавно. Переходная система представляет собой топливный и воздушный жиклер.

Дополнительное оборудование

Вот что представляет собой К151С. Карбюратор дополнительно также оснащен фильтром в виде защитной сетки. Также агрегат имеет обратный топливный канал. Через него лишний бензин уходит в бензобак.

Отличия К151С от базового карбюратора К151

Мы рассмотрели, как устроен карбюратор К151С.

Устройство его, на первый взгляд, практически ничем не отличается от всей 151-й серии. Однако незначительные отличия все-таки имеются. Так, малый диффузор имеет более усовершенствованную конструкцию. В карбюраторе использован распылитель ускорительного насоса на две камеры сразу. Также разработчики изменили профиль кулачков на приводе насоса. Привод воздушной заслонки теперь бесступенчатый. Это позволяет значительно упростить запуск холодного двигателя. Также изменили настройки дозирующих систем. Благодаря этому удалось улучшить характеристики экологичности.

К151С – карбюратор более эффективный, нежели К151. Так, с ним на 7% улучшилась динамика машины. До 5% упал расход топлива при движении в городском цикле. Пуск мотора значительно улучшился, а также стабилизировалась работа мотора на холостом ходу.

Как подключить карбюратор?

Владельцы старых автомобилей часто не знают, как присоединить данное устройство. Подключение карбюратора К151С осуществляется следующим образом.

В конструкции есть 2 шланга. Главный топливный патрубок соединяют со штуцером, находящимся под поплавковой камерой, – той, что ближе к мотору. Обратный топливный канал подключат к нижнему отводу. Его можно увидеть в противоположной от двигателя стороне, ниже, чем основной штуцер.

Также необходимо подключить еще два тонких шланга. Один из них может быть соединен с клапаном экономайзера холостого хода. Это тот шланг, который идет от электромагнитного клапана. Второй соединяют с нижним штуцером с обратной стороны от дроссельных заслонок.

Также нужно подключить шланг ОЗ на трамблер. На карбюраторе имеется штуцер для шланга принудительной вентиляции картера. Его тоже требуется подключить.

Карбюратор К151С: ремонт, регулировка

Осуществляется несколько видов регулировок. Так, можно настроить холостой ход, уровень топлива в поплавковой камере, положение дроссельной и воздушной заслонок.

Уровень горючего изменяют при помощи подгибания поплавка. Параметр замеряют по специальной поверхности в поплавковой камере. Лучше доверить эту операцию профессиональным мастерам, но при необходимости это можно осуществить своими руками.

Для настройки холостого хода необходимо прогреть двигатель до его рабочей температуры. Далее открывают дроссельную заслонку и выкручивают регулировочные болты:

  • винт количества с пружиной;
  • винт качества.

Двигатель наберет обороты. Затем винты закручивают до момента, когда мотор станет работать нестабильно. Затем болтом количества увеличивают обороты до момента, пока двигатель станет работать ровно. Регулировочный механизм, отвечающий за качество, закручивают до упора. Что делают после этого?

Далее винт количеств подкручивают так, чтобы мотор стабильно работал на оборотах 700-800 в минуту. Если винт количества завернуть больше, то будут провалы при нажатии на газ. Если обороты высокие, их убавляют регулировкой положения дроссельной заслонки.

Заключение

Мы рассмотрели карбюратор модели 151С. Ремонт карбюратора К151С и регулировка его, как видно, могут осуществляться своими руками. Это удобно, если поломка случилась далеко от СТО или дома. А обслуживать карбюратор смогут даже новички.

fb.ru

способы устранения неисправностей и ремонт своими руками + видео

Главная » Ремонт » Основные неисправности карбюратора К-151 и тонкости его ремонта

Состояние топливной системы автомобиля напрямую влияет на расход горючего и другие технические характеристики двигателя. Карбюратор поныне используется как один из важнейших элементов, и требует соответствующего внимания и заботы.

Устройство

Как и для всех карбюраторов, в задачи этого узла входит приготовление ТВС (смесь воздуха и горючего). Смешивание обязано производиться по чёткой и программированной схеме, иначе автомобильный двигатель будет получать несбалансированное питание. Устройство должно распознавать несходность нагрузок силового агрегата на холостых, средних и оптимальных оборотах.

Составные элементы карбюратора:

  1. Корпус с поплавковой камерой.
  2. Заслонки, управляемые приводом, интегрированным с педалью газа автомобиля.
  3. Крышка, в которой конструкцией предусмотрен запорный механизм и заслонка для воздуха.
  4. Система ХХ (холостой ход), рассчитанная для стабильного функционирования мотора в этом режиме. Она, в свою очередь, включает в конструкцию обратный канал, винты для настроек с уплотнительными кольцами, жиклёры и т. д.
  5. Основная дозирующая система (ОДС) необходима для непосредственного смешивания ТВС. Состоит из каналов различного назначения.
  6. Эконостат предназначен обогащать ТВС, когда двигатель работает на пределе. По сути, это система дополнительных каналов, подающих при открытии заслонок добавочные порции бензина.
  7. Ускорительный насос, позволяющий машине ускоряться без каких-либо рывков и провалов. Группа дополнительных трактов в корпусе с шариковым клапаном, мембраной и топливным распылителем.
  8. Переходная система используется для плавного повышения оборотов. Относится к вторичной камере, состоит из отдельных жиклёров.

К-151 — двухкамерный механизм со штуцерами, на входе которого стоит фильтрующая сетка, защищающая от прохождения мусора и примесей. Карбюратор этой модели оснащается «обраткой», по которой излишки горючего поступают назад в топливный бак. Канал одновременно не допускает создания внутри узла избыточного давления.

К К-151 подключается несколько шлангов, один из которых представляет систему подсоса. Наличие её упрощает пуск двигателя в холодное время года. Правильнее называть элемент ручкой управления пусковым устройством. Задействуя его, можно увеличить поступление бензина. ТВС получается более обогащённой.

Система подсоса К-151 упрощает пуск двигателя зимой

Карбюратор К-151 применяется на автомобилях «Волга», «Газель» и «Соболь». Интересны для автомобилиста его конструкционное устройство, особенности регулировки и главные причины неполадок.

Модификации К-151

Следует знать, что модель К-151 имеет несколько разновидностей. К примеру, на машинах ГАЗ-31 или ГАЗ-32 используется версия К-151 С. Добавочная буква имеет большое значение для карбюраторщиков, занятых подбором жиклёров. Сечение последних может быть разным, в зависимости от конкретного варианта.

  1. К-151 — базовая модификация, используемая на автомобилях ЗМЗ 4021, ГАЗ-24, ГАЗ-31.
  2. К-151 Д — модель с добавочными распылителями на ускорительном насосе и возможностью вывода струи прямо в камеры. На таких модификациях нет микровыключателя. Один из автомобилей, на которых он устанавливается — ГАЗ-33.

    Модель К-151 Д включает дополнительные распылители ускорительного насоса

  3. К-151 И — видоизменённый тип карбюратора с иной регулировкой. Комплектуются этими образцами автомобили ГАЗ-3310, ГАЗ-3302, ЗМЗ-4103 и т. д.
  4. К-151 Т — есть резьбовой вход подключения шланга для вывода картерных газов и эффективный распылитель эконостата, установленный от К-151 Д. Яркий пример машины с таким карбюратором — УМЗ3 4215 с 2,9 — литровым двигателем.
  5. К-151 С — помимо распылителя, с возможностью струить в обе камеры, имеется также модернизированная система диффузоров, бесступенчатая связь между заслонками воздуха и топлива, что повышает КПД при запуске или прогреве силовой установки.
  6. К-151 В — модификация с узлом вентиляции и электромагнитным клапаном. В отличие от секторного рычага заслонки здесь используется рычажной вариант. Нет штуцеров подвода разряжения и перепуска горючего. Эмульсионный винт ХХ наклонён по отношению к корпусу устройства. Автомобили — УАЗ 31512, УМЗ 34178 и т. д.
  7. К-151 У — всё так же, как у аналога выше, но штуцер имеет подвод к клапану рециркуляции.
  8. К-151 Е — добавочное отверстие в заслонке первичной камеры. Таким карбюратором оснащаются 2,9 — литровые силовые установки автомобиля УМЗ.
  9. К-151 Л — аналогичный вариант модификации К-151 В, но с отличиями. Есть клеммный зажим привода заслонки и усовершенствованный распылитель эконостата.
  10. К-151 П — нет штуцеров для перепуска горючего и подвода разряжения газов. Отсутствует также возвратная пружина на рычаге управления заслонкой воздуха. Зато имеется модернизированный привод, открывающий дроссели.
  11. К-151 Н — аналог модификаций с недовалом затворки при полном газе. Оснащаются автомобили ИЖ.

Основные неисправности

В процессе эксплуатации карбюраторов этой серии неполадки можно выявлять по характерным признакам, проявляющимся в виде тех или иных нарушений в работе ДВС.

Не держит холостые обороты

Причина распространённой неисправности, возникающей при переобогащении или обеднении ТВС, заключается в нарушении регулировок системы ХХ или засорении жиклёров. Не исключена также кривая установка поплавка в камере.

Если карбюратор оснащён электроклапаном, то можно сделать так. Слегка ослабить регулятор и посмотреть, приходят ли обороты в норму. При отсутствии засорения жиклёров так и произойдёт. В чём же причина? Оказывается, всё до банального просто. Часто регулировочный винт ХХ в процессе работы автомобиля ослабляется и выпадает из отверстия. Это и есть причина неисправности. Для её устранения достаточно закрутить его на место.

Регулировочный винт К-151 может выпадать из-за расширения отверстия

Болт этот, если он потерялся, можно купить вместе с ремкомплектом для подходящей модификации К-151. Отверстие рекомендуется подмазать герметиком, так как, скорее всего, оно разболталось и винт плохо его держит. Некоторые советуют вместо клея использовать кусок бумаги, им нужно обмотать кончик регулятора, а затем уже ввинтить. Естественно, основательно этот болт закручивается после соответствующих настроек в режиме холостого хода.

Заливает карбюратор

Перелив для всех моделей топливосмешивающих устройств — довольно распространённое явление. Возникает оно из-за чрезмерного обогащения ТВС, поступающей в двигатель. Это заметно даже невооружённым глазом, достаточно обратить внимание на подтёки из распылителей. Одновременно запах бензина будет царить не только в подкапотном пространстве, но и частично проникать внутрь салона. При этом из глушителя валит чёрный дым.

Если карбюратор заливает сильно, то моторная установка может вообще не запускаться. Особенно часто сложности с заводом наблюдаются на прогретом ДВС. Даже после очередной удачной попытки, силовой агрегат с переливающим карбюратором не будет стабильно работать. Провалы и рывки при нажатии педали газа — тому явное подтверждение.

Причина такой неисправности, как несложно догадаться, скрыта в поплавковой камере. Здесь возможно несколько сценариев:

  1. Повредился или «завис» игольчатый механизм. Если последнее, то достаточно постучать аккуратно молотком по крышке устройства, чтобы клапан вышел из открытого состояния. Не исключено, что элемент неплотно завёрнут, или рассохлось уплотнительное кольцо. Наконец, работоспособность иглы тестируется подаваемым на неё разряжением (открытие/закрытие).
  2. Не держит поплавок. Если в нём дырка, то он начнёт тонуть в жидкости, вытягивая за собой игольчатый клапан. Бензин постоянно будет закачиваться внутрь камеры, так как доступ не закрывается, в итоге, всё закончится переливом топлива. Определить «пробитый» поплавок несложно. Надо снять его и потрясти над ухом. Если слышен звук жидкости внутри, значит, элемент нужно заменить или запаять на первое время.
  3. Поплавок заедает, касается стенок камеры. Это говорит о нарушении его положения в пространстве. Надо просто снять верхнюю часть карбюратора, и, держа его вертикально, проверить, как он ходит.

    Поплавок карбюратора может заедать

  4. Чрезмерно высота горючего внутри камеры. Надо снять крышку устройства, чтобы определить уровень или расстояние от верхней кромки до жидкости при закрытой игле. Делается так: рукой подкачивается бензин до тех пор, пока не перестанет сочиться из отверстия под клапаном. От кромки до топлива должно быть 21,5 мм.

Помимо всего прочего, игольчатый клапан иногда залипает, что происходит по причине наличия масла в бензине. Примеси могут оседать внутри топливного бака, а затем оттуда, образовавшись уже в липкий раствор, проникать в карбюратор и портить иглу. Решение обычное: замена в ремкомплекте, можно заодно с жиклёрами и прочими элементами. Есть и другой вариант: обработать иглу алмазной пастой.

Замерзание карбюратора

При сильной влажности воздуха, в осенне-зимний период на дозирующих элементах К-151 может образовываться лёд. Часто такое случается при передвижении по трассам на больших скоростях, поскольку заслонка постоянно открыта, а воздух холодный.

Очевидно, что замерзание элемента ни к чему хорошему не приводит. Лёд закупоривает воздушные каналы переходной системы, смесь мгновенно переобогащается, и свечи обрастают нагаром. Соответственно, повышается расход горючего, двигатель функционирует с перебоями, троит и даже может заглохнуть.

Как правило, если такое происходит, то во время езды по трассе водитель чувствует, как меняется работа ДВС. Надо остановить машину, скинуть крышку фильтра и тщательно осмотреть поверхность диффузоров. Тогда следует подождать несколько минут, как раз за это время лёд растает, и силовая установка заработает по-прежнему.

Неисправности карбюратора могут выражаться и в следующем:

  1. Засоряется сеточка, пропускающая горючее. Решение — промыть фильтр, а если он сильно деформирован, то заменить его.
  2. Заслонка воздуха закрывается не до конца. Причиной этого становятся неправильные регулировки привода. Надо заново всё настроить.
  3. Не работает электроклапан холостого хода. Случается по двум причинам: обрыв в цепи или неисправность. В первом случае надо устранить обрыв, во втором — заменить деталь.
  4. Подсасывает воздух через корпус карбюратора. Хорошо подтянуть фиксаторы и обновить старые прокладки.

Модернизация и ремонт карбюраторов К-151

В принципе, он считается хорошим карбюратором. Однако сегодня нет такого механизма в автомобильной теме, который бы не нуждался в доработках и улучшениях.

Модернизации подвергается клапан отсечки топлива поплавковой камеры. В большинстве случаях из него фонтанирует горючее, из-за этого намокает прокладка. Иногда бензин может вытекать на поверхность корпуса.

Доработать этот момент несложно:

  1. Карбюратор разбирается.
  2. Прокладка снимается.
  3. Выворачивается этот регулировочный винт.
  4. Вынимается поплавок.
  5. Снимается клапан.

    Клапан отсекателя топлива нуждается в доработке

  6. Вместо него, ставится вот такой клапан с проделанными отверстиями.

    Тюнинг клапана подразумевает наличие нескольких отверстий

Смысл в том, что в этом случае горючее будет истекать через эти отверстия, а не сквозь основное, куда вставляется сама игла.

Проблема с закусыванием заслонки второй камеры — тоже распространённая поломка К-151. Путём доработки этот момент легко устраняется. Происходит всё из-за пружины, которая постоянно тянет вал в сторону рычага.

Пружина заслонки второй камеры постоянно тянет вал в сторону

«Лечение» этой проблемы рекомендовано проводить на новых карбюраторах серии К-151, т. е., сразу и без промедления.

Дело в том, что хорошо скрученная пружина почему-то попадается потребителю в единичных случаях. Обычно карбюратор работает нормально несколько месяцев, но потом начинаются трудности, связанные с деталью. Это выражается смещением заслонки относительно оси, сложностями с открыванием и закрыванием.

Тюнинг проводится следующим образом:

  1. На приводе ускорительного насоса сверлится отверстие.

    Высверлить отверстие на приводе ускорительного насоса

  2. Отверстие делается также в кронштейне.

    Отверстие на кронштейне также высверливается

  3. Далее выворачивается гайка привода насоса.

    Гайка привода насоса откручивается

  4. Снимается рычаг привода насоса.

    Рычаг привода насоса снимается

  5. В этом месте делается прорезь ножовкой по всей окружности.

    Прорезь по окружности делается ножовкой по металлу

Прорезь нужна для того чтобы надеть стопорную шайбу, которая идёт в ремкомплекте для К-151.

Стопорное кольцо надевается на прорезь

Теперь остаётся всё собрать на место:

  1. Вставляется пружина.
  2. Сверху — обычная шайба.
  3. Затем стопорное кольцо на паз, который был сделан ранее.

    Стопорная шайба надевается под гайку

Деталь зафиксирует пружину в одном положении, и она двигаться свободно не будет. Вся проблема как раз в чрезмерной «жидкости» пружинок. Металл чересчур мягкий, растягивание элемента свободное.

Остаётся поставить рычаг, зафиксировать его, как предусмотрено конструкцией. И последний штрих: в проделанные отверстия вдеть концы новой пружины. Она будет играть роль доводчика, тогда работа дроссельной заслонки станет ещё более эффективной.

Пружина в роли доводчика

Видео: как доработать К-151

https://youtube.com/watch?v=yzonCDIFJn4

Как разобрать К-151

Следует учитывать, что разновидностей карбюратора К-151 довольно много. Однако принципы разборки и сборки для всех практически одинаковы. Прежде чем начинать демонтаж, надо мысленно представить карбюратор состоящим из трёх основных частей: крышки, корпуса дросселей (средней части) и низа. С ними и надо работать:

  1. Снимается верхняя крышка К-151. Она легко демонтируется, достаточно будет вывернуть несколько болтов.

    Верхняя крышка К-151 легко демонтируется

  2. Вынимаются оба диффузора.

    Диффузор на К-151 тоже съёмный

  3. Затем снимаются ось с поплавком. Для этого надо вывернуть специальный винт сбоку, который держит элементы.

    Винт сбоку держит ось с поплавком

  4. Вытащить игольчатый клапан с резиновым колечком.
  5. Разобрать жиклёры.

    Схема разборки жиклёров поможет всё правильно снять и собрать

  6. Выкрутить болты ускорительного насоса.

    Болты ускорительного насоса выкручиваются плоской отвёрткой

  7. Вытащить корпус дроссельных заслонок.

    Корпус дроссельных заслонок вытаскивается путём выкручивания двух винтов

Корпус дроссельных заслонок отделяется от нижней части К-151. Под корпусом находятся две прокладки, они тоже снимаются. Главные составные узлы карбюратора могут разбираться основательно, хотя это и не столь необходимо делать, если надо просто прочистить жиклёры, отверстия и каналы. Разборка карбюратора предписывается в обязательном порядке, если засорены жиклёры, надо продуть или промыть внутренние детали К-151.

Сборка узла

Сборка проводится аналогично, только действия осуществляются строго по обратной схеме демонтажа. Обязательна замена прокладок, если состояние их вызывает вопросы. Всё тщательно почистить, используя специальную жидкость для карбюраторов или тряпку, смоченную в бензине.

Начинать сборку рекомендуется с жиклёров, которые надо просто поставить на свои места. Важно определиться с первичной и вторичной камерами, чтобы не перепутать каналы. Некоторые трубки бывают короткими, другие длинными, это надо учитывать.

Вот несколько важных советов по сборке:

  1. Первичную камеру можно сразу определить по направлению к ней топливного носика.

    Топливный носик всегда направлен на первичную камеру

  2. В первичную камеру устанавливается эмульсионный жиклёр с 5 рядами отверстий.

    Эмульсионный жиклёр с 5 рядами отверстий ставится в первую камеру

  3. Все жиклёры надо протягивать толстой и длинной отвёрткой, чтобы площадь соприкосновения была шире, и не оставалось никаких зазубрин. Трубочки, которые утапливаются, надо вворачивать отвёрткой уже поменьше.
  4. Мембрана ускорительного насоса должна быть с металлическим носиком. Если по каким-то причинам, она пластиковая, надо заменить. Это означает, что стоит неродная, а «левая» деталь.

    Мембрана должна быть с железным наконечником

  5. В процессе сборки насоса сначала ставится прокладка на механизм привода, затем сама мембрана. Потом вставляется пружина, и всё затягивается.

    Пружина насоса должна быть поставлена под крышкой

Теперь важные рекомендации по установке шлангов:

Штуцеры К-151 для подключения шлангов

  1. На нижний штуцер карбюратора, что под номером 6, надевается шланг от электроклапана холостого хода.
  2. С клапана на экономайзер холостого хода надевается шланг в штуцер 3. Иначе он называется трубкой забора разряжения.
  3. В выход 7 монтируется шланг от трамблёра или вакуумного регулятора.
  4. К 5 — малый шланг вентиляции картера.

Карбюратор К-151 считается надёжным устройством. Однако время от времени он нуждается в регулировке, разборке и очистке.

Оцените статью: Поделитесь с друзьями!

autoclub.su

уровень в поплавковой камере карбюратора к-151 — ГАЗ Газель, 2.4 л., 2000 года на DRIVE2

Полный размер

Данные не новые, он равен 21.5 мм. от верхнего борта камеры и визуально уровень находится чуть выше( на пару миллиметров) отливной ступеньки в камере, которая хорошо видна.
Из нюансов: ну ни разу не видел на этих карбюратор нормально отрегулированный поплавок с ходом в 2-3 мм.Обычно плюхаются до упора.Я сделал все по феншую, но для этого ради эксперимента пришлось внедрить саморез в рычаг поплавка, потому, что иначе я ничего не придумал.Нет никаких регулируемых ограничителей хода вниз на нем, как, например в ДААЗе-ОЗОНе.
Эксперимент удался и все прошло нормально, но второй я поставил по классическому варианту до падения до упора.Машина поработала минут 20 и клапан перестал пропускать( пр*******лось резиновое кольцо на игле куда-то, давлением бенза)
новая регулировка это еще траха минут на 15, чтобы вывести нужный уровень топлива по штангелю и все готово.
тем, кто занимается впервые напомню: герметичность закрытия клапана проверяется двумя способами: самый блатной-на машине, или просто с подключенным топливным насосом.Игла должна перекрыть подачу, а при дальнейшем нагнетании топлива, уровень должен оставаться неизменным. И второй вариант-по-быструхе.Можно произвести на снятой. Просто заполняете камеру поплавковую по самую небалуйку так, чтобы уровень перекрыл иглу сверху. Если поплавком игла ужата, то со штуцера подачи бензин не попрет.
Но при первом способе можно вычислить и уровень сразу, а во втором-только герметичность.
при том, при выставлении уровня, каждый раз, как подгибаете поплавок, надо отбирать топливо из поплавковой камеры до минимума, чтобы заполнение от топливного насоса было приближено к рабочему режиму.
И еще., после капремонта, если все таки забыли как стояли винт качества и количества, то я руководствуюсь обычно (когда есть чем руководствоваться) примером другого карбюратора, чтобы запустить двигатель.И и меня всегда интересовало количество оборотов этих винтов.
как-то один мужик мне посоветовал на жигулевском моторе 3.5 оборота на 1.5 ( кач. и кол-во соответственно), выставлять и мне это очень помогло.Машина и по сей день(дв. 2106 1.6) работает ровно и спокойно проходит все проверки на СО.
так вот в этот раз я исходил из ровной работы своего карбюратора к-151 Д, стоящего на второй Газели.
Там, если исходить из показания штангеля винт качества открыт на 21 мм. от края отлива, а количества на 3 мм. выступает за его пределы.(на фото). Так хотя бы будет с чего стартовать.На этих положениях у меня и к-151 весьма недурно себя чувствует., хотя с поправками полоборота.
напомню: если уровень сильно превышен и игла не работает( как и произошло у меня), то бенз будет переть сначала в диффузоры( плавает холостой ход, машина начинает троить и т.д.), а потом и вовсе попрет со всех щелей карбюратора. Такое обогащение смеси загадит быстро свечи и мотор заглохнет.
На 4-той фотке уровень проверяется еще и от верхнего края поплавка (11.5 мм.), хотя просто от края верхней стенки поплавковой камеры достаточно.

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

www.drive2.ru

Регулировка карбюратора К-151 авто ГАЗ-3110

1. Регулировку уровня топлива в поплавковой камере производят при снятой крышке карбюратора.

Однако можно, не отсоединяя тягу пускового механизма, отвернуть винты крепления крышки, приподнять ее и, вынув прокладку, повернуть крышку в сторону, насколько это позволят сделать зазоры в местах крепления тяги.
Подкачивать бензин в поплавковую камеру рычагом ручной подкачки топливного насоса до момента, когда уровень стабилизируется.

Расстояние от уровня топлива до верхней плоскости корпуса карбюратора должно составлять 21,5 мм.

При уровне топлива ниже указанного, необходимо подогнуть вверх язычок 1 поплавка, упирающийся в хвостовик иглы запорного клапана.

При повышенном уровне язычок подогнуть вниз.

После каждой подгибки язычка нужно, отвернув сливную пробку поплавковой камеры, слить из нее бензин и, завернув пробку на место, повторно накачать бензин рычагом ручной подкачки топливного насоса

2. Отрегулировать пусковую систему можно непосредственно на автомобиле, полностью прогрев двигатель и подключив к нему тахометр.

Запустив двигатель со снятым воздушным фильтром и слегка нажав на педаль акселератора, полностью закрыть воздушную заслонку рукояткой ее привода.

Затем лезвием отвертки приоткрыть воздушную заслонку настолько, насколько это позволит рычажный механизм.

Частота вращения коленчатого вала двигателя при этом должна составлять 2500—2700 мин.

Если она отличается от указанной, нужно, ослабив контргайку на регулировочном винте, упирающемся в профильный рычаг, заворачивать или выворачивать этот винт.

После окончания регулировки контргайку плотно затянуть.

3. Регулируют систему холостого хода на прогретом двигателе с подключенным к нему тахометром.

Для этого на работающем двигателе установить винт качества 2 в положение, при котором обеспечивается максимальная частота вращения на холостом ходу.

Затем с помощью винта количества 1 установить частоту, повышенную на 100—120 мин.

После этого завернуть винт качества до снижения частоты вращения на 100—120 мин.

Такой способ регулировки позволяет уложиться в нормы токсичности выхлопа.

Однако более точную регулировку рекомендуется проводить с помощью газоанализатора.

autoruk.ru

ГАЗ 24 Killa-Kart › Бортжурнал › Регулировка уровня топлива в поплавковой камере на карбюраторе К-151

Доброго Вам времени суток!
В предыдущей записи между делом написал про регулировку уровня топлива в поплавковой камере. В интернете встречал много мнений на этот счет, притом абсолютно полярных. Не будем тратить время на их изучение и цитирование, а перейдем сразу к делу.

Уровень топлива в поплавковой камере — это расстояние от верхней кромки поплавковой камеры до жидкости, при закрытой игле, т.е. нужно ручкой бензонасоса вручную подкачать топливо до тех пор пока оно не перестанет сочится из отверстия под иглой (за отросток которой крепится поплавок).
Заводской уровень 21.5мм
Я пробовал отклонять в обе стороны
1. 23-24мм
2. 21.5мм — сток
3. 18-19мм
4. 13-14мм

Теперь какие наблюдения:
1. машина чихала и глохла при мало-мальски приличном открытии дросселя
2. хорошо заводится, но провал при резком открытии дросселя
3. по-моему идеальный баланс, хорошо заводится, нет провала при резком открытии дросселя, подхватывает с холостых очень хорошо (буду еще мерить как изменился расход)
4. смесь становится богаче, на холостых бывает глохнет просто так, разгоняется хорошо, но провал при резком открытии сохраняется вплоть до нагрева карбюратора (минут 20 НЕ овощной езды или минут 10-15 на холостых стоя)

И еще небольшой бонус для усидчивых читателей:
Экспериментировал также с иглой ускорительного насоса
1. Завернута до упора (струя льет около 2-3 секунд)
2. Отвернута на несколько оборотов (льет около секунды)

1. Отличный разгон, нет провала при резком открытии дросселя
2. чихает и захлебывается при резком открытии дросселя

Вывод — закручивать нужно до появления устойчивой струи в течении 2-3 секунд.

Цена вопроса: 0 ₽ Пробег: 156 000 км

www.drive2.ru

Регулировка пускового устройства К151с — ГАЗ 31, 2.4 л., 1993 года на DRIVE2

Делать нечего, решил заняться настройкой карба и почистить заодно.Проблема была в холодном запуске, а именно двигатель глох сразу после пуска и так несколько раз.Поразмыслив, предположил что воздушная заслонка не приоткрывается после пуска, переобогащается смесь и такой итог.Собственно так оно и было, только дело было не в пусковом зазоре, а в том что она клинила в закрытом положении-зашлифовал края надфилем и отрегулировал положение на оси. Заменил диафрагму пускового.
Затем приступил к регулировке пускового устройства:приоткрытия дросселя(зазор был меньше 1мм, при положенных 1,5), далее на рычаге воздушной(был намного больше рекомендованного) и наконец приоткрытия заслонки 6мм был в норме
Еще немного завернул иглу ускорительного насоса, так как был небольшой провал при резком открытии дросселя, может еще проверю его производительность по методике 10 качков.
На этом пока все, перед установкой проверю уровень в поплавковой камере, поменяю сетку-фильтр.

Зеленый регулирует зазор на рычаге воздушной, красный-упор дроссельной

Полный размер

Упор поближе

Полный размер

Требуемый зазор

Полный размер

Этим винтом регулируем величину открытия заслонки(6мм)

Полный размер

6мм

Полный размер

Ремкомплект

Полный размер

Методика

Полный размер

Картонную прокладку из р/к лучше заменить на резиновую

Цена вопроса: 300 ₽

www.drive2.ru

карбюраторы серии к151 — ГАЗ Газель, 2.2 л., 2003 года на DRIVE2

Перелопатил кучу мануалов от страниц яндекса и дрйва в глазах рябит. может кому понадобится.
На двигателях УМЗ и ЗМЗ с рабочим объёмом от 2,5 до 2,9 л применяются двухкамерные карбюраторы К-151 различных модификаций, выпускаемые ОАО «Топливные системы» («ПЕКАР») в С.-Петербурге. Эти карбюраторы имеют последовательное открытие дроссельных заслонок, что обеспечивает поддержание высокого разрежения и скорости движения воздуха у распылителя главной дозирующей системы (ГДС), необходимого для высококачественного распыления топлива при низких частотах вращения коленчатого вала, и низкое аэродинамическое сопротивление на впуске при высоких.

Рассмотрим более подробно конструктивные особенности этих карбюраторов, их достоинства и недостатки, а также способы улучшения экономических и экологических показателей и ездовых свойств автомобиля.

Поплавковая камера

Достоинством К-151 является расположение запорной иглы в корпусе карбюратора. Это упрощает регулировку уровня топлива и проверку герметичности иглы. Достаточно снять крышку карбюратора, подкачать топливо ручным приводом насоса и, подгибая верхний усик поплавка, установить заданный уровень.

Положение уровня топлива определяет количество подаваемого топлива и, как следствие, основные эксплуатационные качества автомобиля. Его рекомендуемая величина дается в инструкции по обслуживанию карбюратора. При низком уровне топлива происходит обеднение смеси, вызывающее появление рывков, «провалов», как правило, проявляющихся во время разгона и движения с повышенными скоростями. У К-151 это может происходить при рекомендованном уровне топлива (расстояние до плоскости разъёма 21–23 мм). В этом случае следует повысить уровень, уменьшив это расстояние до 19 мм, отогнув язычок поплавка вниз. После регулировки следует убедиться, что плоскость язычка в точке касания иглы приблизительно перпендикулярна оси иглы, иначе возможно её заедание из-за перекоса.

Чрезмерное увеличение уровня топлива приводит к переобогащению рабочей смеси, вызывающему ухудшение пусковых качеств, забрасыванию свечей, дымлению, увеличению расхода топлива. Перелив топлива может происходить из-за нарушения герметичности запорного механизма. Для его проверки можно снять крышку фильтра или переходник и, подкачивая рычагом топливного насоса, посмотреть – не происходит ли утечка топлива (можно при работающем на холостом ходу двигателе убедиться в отсутствии каплепадения во второй камере карбюратора из распылителя ГДС – прим. Ред.).

В карбюраторах К-151 применяются запорные иглы с уплотнительными шайбами, что снижает требования к точности изготовления самой иглы и её корпуса (а также позволяет обойтись без специального демпфирующего устройства в клапане – прим. Ред.). Но из-за возможной деформации уплотнительной шайбы (плохое качество её материала, применение нестандартных топлив) бывают случаи зависания иглы, из-за чего нарушается работа двигателя.

Главная дозирующая система

Наиболее экономичным является состав смеси, в который на каждый килограмм топлива приходится от 16 до 18 кг воздуха. Он обеспечивается за счёт подбора дозирующих элементов: топливного и воздушного жиклеров, эмульсионной трубки. Воздушный жиклер ГДС соединен с внутренней полостью эмульсионной трубки, имеющей несколько рядов отверстий. При повышении расхода воздуха разрежение в малом диффузоре у распылителя увеличивается, а уровень топлива в эмульсионной трубке снижается. В действие вступает всё большее число отверстий, обеспечивая заданный состав смеси на всех режимах частичных нагрузок, независимо от частоты вращения и положения дроссельной заслонки.

Системы обогащения смеси

Эконостат служит для повышения мощности двигателя обогащением смеси до соотношения 1:13…1:14. Распылитель эконостата расположен значительно выше уровня топлива в поплавковой камере, в воздушном канале крышки карбюратора, где скорость воздуха значительно ниже, чем в диффузоре. Поэтому топливо начинает поступать через эконостат только при работе двигателя на средних и высоких оборотах и нагрузках близких к полным. Засорение жиклера эконостата может быть одной из причин снижения максимальной скорости автомобиля.

Ускорительный насос служит для компенсации обеднения смеси при резком открытии дроссельной заслонки впрыскиванием дополнительного топлива в воздушный канал карбюратора. В К-151 ускорительный насос мембранного типа. С одной стороны у мембраны имеется пружина, обеспечивающая всасывание топлива, с другой – демпфирующая пружина. Период впрыскивания определяется характеристикой демпфирующей пружины, проходным сечением распылителя, жиклером дренажной системы. Закон впрыскивания определяется профилем приводного кулачка и соотношением длин рычагов. Для предотвращения впрыска топлива при малых перемещениях мембраны, например, при движении по неровной дороге, рабочая полость мембраны сообщается с поплавковой камерой перепускным каналом. Регулирование подачи топлива осуществляется иглой в жиклере перепускного канала или изменением проходного сечения форсунки.

Одной из причин ухудшения динамики автомобиля во время разгона является нарушение работы ускорительного насоса. Его предварительную проверку можно выполнить без снятия карбюратора с двигателя. При резком открытии дроссельной заслонки из распылителя должна выходить ровная струя. Она не должна попадать на стенки канала или малого диффузора.

Причинами нарушения работы насоса может быть попадание соринок в седло всасывающего или нагнетательного клапанов, но чаще всего – в распылитель (еще две распространенные причины – нарушение герметичности мембраны или заедание рычага – прим. Ред.).

Системы холостого хода

К-151 имеют автономную систему холостого хода, представляющую собой миниатюрный карбюратор. Дроссельная заслонка в это время закрыта почти полностью, зазор между ней и стенками минимальный, при нем не должно создаваться разрежение в трубке вакуумного регулятора опережения зажигания. Автономная система обеспечивает хорошее распыление топлива и равномерное распределение смеси по цилиндрам (по составу), что позволяет обеднять топливовоздушную смесь до соотношения 1:15. В результате удается снизить концентрацию СО в отработавших газах до 0,3–0,6% (обычно регулируют с некоторым запасом – 0,7–1,1%), а СН до 180–230 ppm. Регулирование проводится в основном винтом качества смеси.

На режимах принудительного холостого хода (ПХХ), включающих торможение двигателем и замедление вращения коленчатого вала, мембранный механизм смещает клапан экономайзера принудительного холостого хода (ЭПХХ) до упора, перекрывая выходное отверстие и прекращая подачу топлива. Применение автономной системы с ЭПХХ снижает выброс СО и СН на 30–40 % и при испытании по городскому циклу уменьшает расход топлива на 4,5%, а также увеличивает эффективность торможения двигателем примерно на 25% (приведены «официальные» или «хрестоматийные» величины эффективности ЭПХХ – прим. Ред.). ЭПХХ также выполняет функцию «антидизель», т.е. при низкооктановом бензине предотвращается работа с самовоспламенением после выключения зажигания.

В К-151 топливо из канала главной дозирующей системы поднимается к эмульсионной трубке с топливным и воздушным жиклерами холостого хода. Пройдя через боковые отверстия в трубке и эмульсионный жиклер, оно в виде топливовоздушной эмульсии смешивается с дополнительным воздухом, поступающим через второй воздушный жиклер. Для обеспечения стабильности состава смеси при регулировании винтом количества в нижней части корпуса карбюратора система холостого хода имеет два канала. По первому из них эмульсия сквозь переходную втулку поступает в полость перед переходными отверстиями, а затем через сечение, регулируемое нижним винтом качества, в основной диффузор с винтом количества. По второму каналу в карбюраторах первых выпусков эмульсия проходила через сечение, регулируемое дополнительным (верхним) винтом качества. В карбюраторах последних выпусков этот винт заменен дозирующим отверстием в канале. Далее эмульсия поступает в дополнительный диффузор в корпусе дроссельных заслонок.

Система управления клапаном ЭПХХ К-151 (для «402-ых» моторов – прим. Ред.) состоит из электронного блока, включающего электропневмоклапан при снижении числа оборотов коленчатого вала ниже заданного и отключающего его при их увеличении свыше 1 500 мин-1, и микровыключателя. В работе любых карбюраторов наибольшее число отказов происходит в системе холостого хода. Это не удивительно – ведь её топливный жиклер имеет очень маленькое сечение. Поэтому, если «пропал» холостой ход, то он – первый кандидат на продувку. Правда, прежде чем разбирать карбюратор, есть смысл провести простейшую диагностику.

www.drive2.ru

УАЗ 469 / Happiness In Darkness › Бортжурнал › Восстановление, сборка — Настройка карбюратора К151С ч.1

Итак, поездив на разных топливах, 80-ый, 92-ой, 96-ой, пробовал менять, настраивать УОЗ,
переключал коммутаторы, менял свечи, ВВ провода, катушки, трамблеры…

Вообщем остается смотреть карбюратор… Динамика авто не нравится мне…
А может просто я не ездил на УАЗ-ах, и кажется что плохо едет…
Но в карбюратор надо залезть.

По советам на УАЗ-буке, а именно хорошему товарищу MetalVoice,
переворачиваем носик эконостата на 180 градусов…

Перевернули:

Прокатился, разницы особо не заметил…

Ладно, нейтральный результат — тоже результат…

Еще нужно проверить уровень топлива в ПК…

Вскрываем еще не тронутый карбюратор, под пломбой:

Снимаем верхнюю крышку:

Вскрытый карб:

Заводим ДВС, и смотрим уровень в ПК:

Видео открытого карба на ХХ:

Уровень получается примерно 21 мм… Вроде норма…

Нашел в сети таблицу жиклеров карбюраторов К151:

Более хорошее разрешение: www.tis.kz/uaz/II/K151-T.jpg

И так-же нашел схему их установки:

Более хорошее разрешение: www.tis.kz/uaz/II/K151.jpg

Продолжение следует…

www.drive2.ru

ГАЗ Соболь Mechanic22171 › Бортжурнал › Настройка ускорительного насоса карб. К-151Д…и не только.

Привееет сообщество!) В последнее время перестала мне нравиться динамика, и работа двигателя, а именно по отзову его на педаль акселератора, возникали провалы время от времени, да и расход чет увеличился. Ну как обычно лазил по великим просторам литературы и интернета и норвался на тему про ускорительный насос, его производительность и т.п. И сразу как то грузанулся, а ведь я то свой не разу не проверял…не на производительность, не на отзыв его на открытие заслонок. Короче понеслась проверка и экспертиза)) Вооружился всем необходимым и в гараж. Что сказать, косяков у себя на карбе я обнаружил несколько, благодаря ускорительному насосу.
1. Производительность насоса после замера у меня составила 7,5-8 куб.см, плохо!
2. Ножка уск. насоса имела маленький но люфт, т.е. запаздывало подача топлива. Тоже плохо!
3. Струя из носика распылителя била в деффузОр, а не в саму камеру.А это уже очень плохо!
Вообщем насос я свой настроил, очень скажу кропотливое занятие, выставил я его на 11,5 куб.см. Учитывая норматив 10+/-2,5 куб.см это для некоторых моделей К-151, для своего «Д» так и не нашел. Направление струи носика распылителя так же откорректировал, точно в камеру. Ну и поправил ножку самого насоса, чтобы реакция его поступала сразу же после нажатия на акселератор. Результат работ: 1. Динамика двигателя увеличилась, ощутимо. 2. Провала нет, даже на холодный двигатель.(Раньше например после запуска на холодную, когда машина еще на подсосе греется, при даже легком нажатии на газ машина как будто захлебывалась и чуть не глохла, ну соответственно нажмешь на газ побольше глохнет, теперь это явление пропало). 3. Самое главное, машина теперь просит почти в два раза меньше подачи топлива педалью, чем раньше, что очень радует. А по счету расхода узнаю чуть позже, думаю с ним все будет в порядке. Главное друзья мои терпение и желание наводить порядок со своим автомобилем, и все будет ОК) Удачи всем!

Полный размер

Испытуемый готов.

Полный размер

Набор инструментов минимален, главное средство для измерения, в моем случае шприц.

www.drive2.ru

УАЗ 469 / Happiness In Darkness › Бортжурнал › Восстановление, сборка — Настройка карбюратора К151С ч.2

Продолжаем…

Будем делать из К151С, родной К151В, т.к. С предназначен для 402-го ДВС,
а у нас 417 ДВС… Для 417-го нужен В

Купил ремкомплект на карбюратор К151В:

По совету товарища MetalVoice, а именно:

Поменять все жиклеры К151С на жиклеры от К151В, меняем те,
что обведены на этой фотке:

Более хорошее разрешение: www.tis.kz/uaz/II/K151-J.jpg

Так-же нужна эмульсионная трубка 2-ой камеры с двумя отверстиями,
но в ремкомплекте эмульсионных трубок нет… Как вариант, можно
просто на трубке от К151С запаять третий ряд отверстий…

Меняем все жиклеры согласно схеме выше, на жиклеры из ремкомплекта К151В,
проблем с этим нет, все просто… Но вот боковые жиклеры изъять было достаточно
сложно, удалось только вот так:

На эмульсионной трубке второй камеры пока не стал запаивать третий ряд.

Блок жиклеров ХХ оставляем родной от К151С, он такой-же должен быть как и на К151В.

Все жиклеры согласно схеме поменяли:

Старые жиклеры из К151С:

Кстати, крышка карба и некоторые жиклеры были не очень хорошо закручены…

Усе готово:

Собираем карбюратор:

После сборки заводим, ХХ такой-же как и раньше…

Прокатился, покатался, думаю что стало лучше… Но не так, чтоб прям аж поперло…
Вроде лучше работает… Сложно мне, забываю я как оно было до… Всегда так…

Пока так оставим… Если будут мысли, уже будем дальше проверять…

Возможно еще клапана надо отрегулировать, а то после капиталки уже 600 км…

www.drive2.ru

Ремонт карбюратора К-151

Снять воздушный фильтр

Отвернуть винт 6 крепления тяги 2 к рычагу привода воздушной заслонки, отвернуть винт 1 крепления тяги к кронштейну и отсоединить тягу от карбюратора

Отвернуть гайку 7 крепления троса акселератора к сектору привода дроссельных заслонок, сдвинуть сальник 5, отвернуть гайку 4 и вынуть тягу 3 из кронштейна и сектора привода дроссельных заслонок.

Ослабив стяжные хомуты, снять со штуцеров карбюратора шланги подачи 2 и слива 3 топлива, шланг 1 системы вентиляции картера, вакуумный шланг управления экономайзером принудительного холостого хода (ЭПХХ) с обратной стороны карбюратора и шланг 5 к электромагнитному клапану системы ЭПХХ, к вакуум- корректору распределителя зажигания 7 и к термовыключателю рециркуляции отработавших газов

Отсоединить провода 6 от микровыключателя системы ЭПХХ. 4.

Отвернуть четыре гайки 1 крепления карбюратора к впускной трубе, снять держатель 2 троса

Снять карбюратор

Разборка карбюратора

Отворачивать винты крепления дроссельных заслонок на осях и снимать заслонки без крайней необходимости не рекомендуется, так как их смещение может привести к заеданию заслонок в каналах.

Запрессованные в корпус латунные соединительные трубки каналов вынимать не следует во избежание нарушения плотности их посадки.

Разбирать карбюратор следует только в крайнем случае.

Если промывка и продувка сжатым воздухом без разборки не устраняют заедания дроссельных и воздушной заслонок и не приводят к полной очистке жиклеров и каналов от отложений, то нужно разобрать и промыть детали карбюратора.

Отсоединить тягу 1 привода воздушной заслонки от профильного рычага, вынув шплинт 2 из отверстия на ее изогнутом конце

Вывернуть семь винтов крепления крышки к корпусу и снять крышку карбюратора

Вывернуть два винта крепления корпуса дроссельных заслонок и, выведя из зацепления соединительную серьгу, снять корпус

Отвернуть три винта 1 крепления и снять крышку 2 вакуумной диафрагмы пускового устройства карбюратора

С обратной стороны крышки карбюратора вывести из зацепления с рычагом пускового устройства отогнутый конец штока диафрагмы пускового устройства карбюратора.

Снять диафрагму 1 с крышки карбюратора.

Отсоединить оттяжную пружину 1 воздушной заслонки от пальца крышки. Отвернуть два винта 2 и сиять крышку 3 канала вентиляции поплавковой камеры.

Отвернуть винт 4 крепления и сиять распылитель 5 эконостата.

Отвернуть винты крепления и снять рычаги привода пускового устройства.

Снять аккуратно с нижнего фланца корпуса крепления теплоизоляционную прокладку, и снять

Отвернуть два винта 1 микровыключатель 2 системы ЭПХХ.

Вынуть шплинт 4 и снять с оси рычаг 3 управления воздушной заслонкой вместе с профильным рычагом 5.

Вывернуть отверткой заглушку 1 отверстия оси поплавка и вынуть расположенную под ней алюминиевую уплотнительную шайбу.

Пинцетом или круглогубцами вынуть ось поплавка и снять поплавок 4 и иглу 3 запорного клапана.

Вывернуть седло 2 из корпуса карбюратора.

Отвернуть четыре винта 1 крепления и снять крышку 2 ускорительного насоса вместе с рычагом.

Снять диафрагму ускорительного насоса и расположенную под ней отжимную пружину.

Вывернуть пустотелый топливоподающий болт 1 и снять его вместе с коллектором 2 и алюминиевыми уплотнительными шайбами 3.

Вынуть из коллектора 2 топливоподающий болт 1 вместе с сетчатым фильтром и снять с него алюминиевые уплотнительные шайбы 3.

Вывернуть из стенки поплавковой камеры сливную пробку с уплотнительной шайбой.

Тщательно подобранной отверткой (во избежание повреждения деталей, изготовленных из латуни) вывернуть из корпуса воздушные 3 и топливные 2 жиклеры главной дозирующей системы, воздушные жиклеры 4 и 5 холостого хода и переходной системы.

Отвернуть расположенные по бокам корпуса резьбовые пробки 1 и вывернуть топливные жиклеры системы холостого хода и переходной системы, расположенные под пробками.

Вывернуть пустотелый топливоподающий винт 6 крепления распылителя ускорительного насоса и снять распылитель 7 вместе с уплотнительными алюминиевыми шайбами.

Отвернуть три винта крепления и снять блок 1 ЭПХХ вместе с уплотнительной прокладкой корпуса карбюратора.

При необходимости замены диафрагмы ЭПХХ отвернуть четыре винта скрепления клапана ЭПХХ и снять клапан в сборе.

Затем, аккуратно отделив от диафрагмы крышку клапана, вынуть из корпуса клапана диафрагму вместе с пружиной.

Для разборки механизма привода дроссельных заслонок нужно отвернуть гайки крепления деталей привода на осях заслонок, предварительно промаркировав расположение деталей на осях, и снять детали

После разборки промыть детали карбюратора в бензине или растворителе, затем продуть сжатым воздухом все каналы в деталях карбюратора.

Сборка и установка

Сборку узлов карбюратора и самого карбюратора в целом, а также его установку на двигатель производят в последовательности, обратной разборке, с учетом следующего:

1. Необходимо проверить привалочные поверхности корпуса дроссельных заслонок на отсутствие забоин и трещин.

2. Проверить легкость проворачивания заслонок в корпусе и четкость их возврата в исходное положение после снятия усилия.

3. Проверить привалочные поверхности корпуса карбюратора на предмет отсутствия забоин и коробления в зоне отверстий для крепежных винтов.

4. Все картонные, паронитовые и резиновые прокладки необходимо заменить новыми.

5. Винты, соединяющие корпусные детали карбюратора, следует затягивать плотно, но без приложения чрезмерных усилий, могущих привести к деформации деталей, изготовленных из мягких сплавов.

6. Гайки крепления карбюратора к впускной трубе двигателя следует затягивать без чрезмерных усилий и только на холодном двигателе.

7. После сборки и установки карбюратор необходимо отрегулировать

Регулировка

1. Регулировку уровня топлива в поплавковой камере производят при снятой крышке карбюратора.

Однако можно, не отсоединяя тягу пускового механизма, отвернуть винты крепления крышки, приподнять ее и, вынув прокладку, повернуть крышку в сторону, насколько это позволят сделать зазоры в местах крепления тяги.

Подкачивать бензин в поплавковую камеру рычагом ручной подкачки топливного насоса до момента, когда уровень стабилизируется.

Расстояние от уровня топлива до верхней плоскости корпуса карбюратора должно составлять 21,5 мм.

При уровне топлива ниже указанного, необходимо подогнуть вверх язычок 1 поплавка, упирающийся в хвостовик иглы запорного клапана.

При повышенном уровне язычок подогнуть вниз.

После каждой подгибки язычка нужно, отвернув сливную пробку поплавковой камеры, слить из нее бензин и, завернув пробку на место, повторно накачать бензин рычагом ручной подкачки топливного насоса

2. Отрегулировать пусковую систему можно непосредственно на автомобиле, полностью прогрев двигатель и подключив к нему тахометр. Запустив двигатель со снятым воздушным фильтром и слегка нажав на педаль акселератора, полностью закрыть воздушную заслонку рукояткой ее привода.

Затем лезвием отвертки приоткрыть воздушную заслонку настолько, насколько это позволит рычажный механизм.

Частота вращения коленчатого вала двигателя при этом должна составлять 2500—2700 мин.

Если она отличается от указанной, нужно, ослабив контргайку на регулировочном винте, упирающемся в профильный рычаг, заворачивать или выворачивать этот винт.

После окончания регулировки контргайку плотно затянуть.

3. Регулируют систему холостого хода на прогретом двигателе с подключенным к нему тахометром.

Для этого на работающем двигателе установить винт качества 2 в положение, при котором обеспечивается максимальная частота вращения на холостом ходу.

Затем с помощью винта количества 1 установить частоту, повышенную на 100—120 мин.

После этого завернуть винт качества до снижения частоты вращения на 100—120 мин.

Такой способ регулировки позволяет уложиться в нормы токсичности выхлопа.

Однако более точную регулировку рекомендуется проводить с помощью газоанализатора.

Проверка

Проверяют работу ускорительного насоса при снятой крышке карбюратора после регулировки уровня топлива.

При резком открытии дроссельных заслонок из распылителя ускорительного насоса должна выходить ровная сильная струя бензина, достигающая каналов корпуса дроссельных заслонок без касания стенок диффузоров.

Неравномерная и искривленная струя свидетельствует о частичном засорении каналов распылителя.

При полном отсутствии струи следует убедиться в чистоте и исправности топливоподводящего винта распылителя и расположенного в нем нагнетательного клапана.

При их исправности следует проверить чистоту и исправность диафрагменного механизма ускорительного насоса, разобрав его, как это описывалось выше.

Регулировка тяги воздушной заслонки карбюратора

1. Отвернуть винт 4 и вынуть тягу 1 из рычага привода воздушной заслонки.

Отвернуть винт 2 и вынуть оболочку 3 тяги из кронштейна на карбюраторе.

2. Не снимая оболочку, вытянуть из нее тягу за ручку в салон автомобиля.

Для замены оболочки тяги необходимо отвернуть гайку на кронштейне под рулевой колонкой и вытянуть оболочку тяги в салон.

3. Вставить новую тягу в оболочку со стороны салона и закрепить винтом на рычаге привода воздушной заслонки.

Если снималась оболочка, нужно вначале установить оболочку тяги со стороны салона и закрепить гайкой на кронштейне, затем вставить в нее тягу.

4. Отрегулировать тягу воздушной заслонки. Для этого нажать до упора на ручку тяги, расположенную под рулевой колонкой.

Ослабить затяжку винта 4 и полностью открыть воздушную заслонку, повернув рычаг 5 привода заслонки.

Затем затянуть винт 4.

Вытянуть ручку тяги на себя до упора, воздушная заслонка должна полностью закрыться.

Если этого не произошло, ослабить затяжку винта 1 и перемещением оболочки 2 тяги в кронштейне 3 добиться полного закрытия воздушной заслонки.

Еще раз проверить открытие и закрытие воздушной заслонки, перемещая ручку тяги от упора до упора.

Карбюратор к 151 игла ускорительного насоса

Проверку работы ускорительного насоса карбюратора К-151 удобнее всего производить при снятой крышке поплавковой камеры. Хотя при наличии хорошего направленного освещения ее можно осуществить, не разбирая карбюратора.

Проверка работы ускорительного насоса карбюратора К-151, схема, проверка и регулировка производительности ускорительного насоса карбюратора.

Признаком исправности ускорительного насоса карбюратора К-151 является наличие не искривленной струи топлива, выходящей из распылителя ускорительного насоса при резком открытии дроссельных заслонок и заполненной топливом поплавковой камере. При этом после нескольких качков, необходимых для заполнения рабочей полости насоса, при каждом перемещении рычага из распылителя должна выходить ровная, не попадающая на стенки большого и малого диффузоров струя топлива.

Общая схема карбюратора К-151 для двигателя ЗМЗ-402, К-151Д для двигателя ЗМЗ-406, К-151Т для двигателя УМЗ-4215.

Нарушение формы и направления струи распылителя ускорительного насоса карбюратора К-151 свидетельствует о частичном засорении распылителя. В момент качка из дренажного отверстия у дна поплавковой камеры должна выходить небольшая струя топлива. Ее можно наблюдать на снятом с двигателя карбюраторе без крышки поплавковой камеры и поплавка. Для этого наклонить его так, чтобы дренажное отверстие слегка обнажилось.

Схема ускорительного насоса карбюратора К-151.

При отсутствии струи топлива из распылителя ускорительного насоса убедитесь в исправности нагнетательного клапана в винте крепления распылителя и чистоте его отверстия. А также в чистоте отверстия распылителя. При отсутствии положительного результата разберите диафрагменный механизм ускорительного насоса. Промойте его полость и продуйте все отверстия каналов ускорительного насоса струей сжатого воздуха.

Прочистить отверстие распылителя ускорительного насоса карбюратора К-151 можно отрезком медной или даже стальной проволоки диаметром 0,3 мм. Иногда бывает необходимо прочистить иглой, проволокой или даже сверлом диаметром 1,5 мм подводящий канал в корпусе распылителя со стороны отверстия его крепления.

Проверка и регулировка производительности ускорительного насоса карбюратора К-151.

Проверить и при необходимости отрегулировать производительность ускорительного насоса карбюратора К-151 можно только на снятом с двигателя карбюраторе. Для этого необходимо заполненный топливом карбюратор установить над воронкой с мензуркой. Затем выполнить следующие действия:

— Полностью открыть дроссельные заслонки. Удержать их 3-5 секунд в открытом положении.
— Затем закрыть на 1-2 секунды и вновь открыть.
— Повторить эти операции 10 раз подряд.

Объем собранного в мензурке топлива должен приблизительно (за вычетом потерянного и испарившегося топлива) соответствовать табличным данным, приводимым в технической характеристике карбюратора.

При значительном несоответствии полученного результата табличным данным можно попытаться скорректировать производительность ускорительного насоса карбюратора К-151, вращая регулировочную иглу на жиклере дренажного канала ускорительного насоса. При заворачивании иглы производительность увеличивается. А при отворачивании — уменьшается.

По материалам книги «Карбюратор К-151, устройство, ремонт, регулировка».
А.С. Тюфяков.

По нашей просьбе Анатолий Валентинович подготовил статью по всем карбюраторам, устанавливающимся на двигатели ЗМЗ и УМЗ коммерческих автомобилей. Однако объём статьи оказался чрезмерно велик. И потому мы её разбили на части. Первая посвящена наиболее распространенным карбюраторам, вторая остальным – «Карбюраторы малых грузовиков и грузопассажирских автомобилей», а заключительная часть «Карбюраторы УАЗов и «Газелей», посвященна ремонту и доводке этих карбюраторов.

В отдельной статье «Распределённый впрыск на УАЗах и «Газелях» будут расмотрены системы с распределённым впрыском бензина на впускной клапан для двигателей ЗМЗ и УМЗ.

На двигателях УМЗ и ЗМЗ с рабочим объёмом от 2,5 до 2,9 л применяются двухкамерные карбюраторы К-151 различных модификаций, выпускаемые ОАО «Топливные системы» («ПЕКАР») в С.-Петербурге. Эти карбюраторы имеют последовательное открытие дроссельных заслонок, что обеспечивает поддержание высокого разрежения и скорости движения воздуха у распылителя главной дозирующей системы (ГДС), необходимого для высококачественного распыления топлива при низких частотах вращения коленчатого вала, и низкое аэродинамическое сопротивление на впуске при высоких.

Рассмотрим более подробно конструктивные особенности этих карбюраторов, их достоинства и недостатки, а также способы улучшения экономических и экологических показателей и ездовых свойств автомобиля.

Поплавковая камера

Достоинством К-151 является расположение запорной иглы в корпусе карбюратора. Это упрощает регулировку уровня топлива и проверку герметичности иглы. Достаточно снять крышку карбюратора, подкачать топливо ручным приводом насоса и, подгибая верхний усик поплавка, установить заданный уровень.

Положение уровня топлива определяет количество подаваемого топлива и, как следствие, основные эксплуатационные качества автомобиля. Его рекомендуемая величина дается в инструкции по обслуживанию карбюратора. При низком уровне топлива происходит обеднение смеси, вызывающее появление рывков, «провалов», как правило, проявляющихся во время разгона и движения с повышенными скоростями. У К-151 это может происходить при рекомендованном уровне топлива (расстояние до плоскости разъёма 21–23 мм). В этом случае следует повысить уровень, уменьшив это расстояние до 19 мм, отогнув язычок поплавка вниз. После регулировки следует убедиться, что плоскость язычка в точке касания иглы приблизительно перпендикулярна оси иглы, иначе возможно её заедание из-за перекоса.

Чрезмерное увеличение уровня топлива приводит к переобогащению рабочей смеси, вызывающему ухудшение пусковых качеств, забрасыванию свечей, дымлению, увеличению расхода топлива. Перелив топлива может происходить из-за нарушения герметичности запорного механизма. Для его проверки можно снять крышку фильтра или переходник и, подкачивая рычагом топливного насоса, посмотреть – не происходит ли утечка топлива (можно при работающем на холостом ходу двигателе убедиться в отсутствии каплепадения во второй камере карбюратора из распылителя ГДС – прим. Ред.).

В карбюраторах К-151 применяются запорные иглы с уплотнительными шайбами, что снижает требования к точности изготовления самой иглы и её корпуса (а также позволяет обойтись без специального демпфирующего устройства в клапане – прим. Ред.). Но из-за возможной деформации уплотнительной шайбы (плохое качество её материала, применение нестандартных топлив) бывают случаи зависания иглы, из-за чего нарушается работа двигателя.

Главная дозирующая система

Наиболее экономичным является состав смеси, в который на каждый килограмм топлива приходится от 16 до 18 кг воздуха. Он обеспечивается за счёт подбора дозирующих элементов: топливного и воздушного жиклеров, эмульсионной трубки. Воздушный жиклер ГДС соединен с внутренней полостью эмульсионной трубки, имеющей несколько рядов отверстий. При повышении расхода воздуха разрежение в малом диффузоре у распылителя увеличивается, а уровень топлива в эмульсионной трубке снижается. В действие вступает всё большее число отверстий, обеспечивая заданный состав смеси на всех режимах частичных нагрузок, независимо от частоты вращения и положения дроссельной заслонки.

Системы обогащения смеси

Эконостат служит для повышения мощности двигателя обогащением смеси до соотношения 1:13…1:14. Распылитель эконостата расположен значительно выше уровня топлива в поплавковой камере, в воздушном канале крышки карбюратора, где скорость воздуха значительно ниже, чем в диффузоре. Поэтому топливо начинает поступать через эконостат только при работе двигателя на средних и высоких оборотах и нагрузках близких к полным. Засорение жиклера эконостата может быть одной из причин снижения максимальной скорости автомобиля.

Ускорительный насос служит для компенсации обеднения смеси при резком открытии дроссельной заслонки впрыскиванием дополнительного топлива в воздушный канал карбюратора. В К-151 ускорительный насос мембранного типа. С одной стороны у мембраны имеется пружина, обеспечивающая всасывание топлива, с другой – демпфирующая пружина. Период впрыскивания определяется характеристикой демпфирующей пружины, проходным сечением распылителя, жиклером дренажной системы. Закон впрыскивания определяется профилем приводного кулачка и соотношением длин рычагов. Для предотвращения впрыска топлива при малых перемещениях мембраны, например, при движении по неровной дороге, рабочая полость мембраны сообщается с поплавковой камерой перепускным каналом. Регулирование подачи топлива осуществляется иглой в жиклере перепускного канала или изменением проходного сечения форсунки.

Одной из причин ухудшения динамики автомобиля во время разгона является нарушение работы ускорительного насоса. Его предварительную проверку можно выполнить без снятия карбюратора с двигателя. При резком открытии дроссельной заслонки из распылителя должна выходить ровная струя. Она не должна попадать на стенки канала или малого диффузора.

Причинами нарушения работы насоса может быть попадание соринок в седло всасывающего или нагнетательного клапанов, но чаще всего – в распылитель (еще две распространенные причины – нарушение герметичности мембраны или заедание рычага – прим. Ред.).

Системы холостого хода

К-151 имеют автономную систему холостого хода, представляющую собой миниатюрный карбюратор. Дроссельная заслонка в это время закрыта почти полностью, зазор между ней и стенками минимальный, при нем не должно создаваться разрежение в трубке вакуумного регулятора опережения зажигания. Автономная система обеспечивает хорошее распыление топлива и равномерное распределение смеси по цилиндрам (по составу), что позволяет обеднять топливовоздушную смесь до соотношения 1:15. В результате удается снизить концентрацию СО в отработавших газах до 0,3–0,6% (обычно регулируют с некоторым запасом – 0,7–1,1%), а СН до 180–230 ppm. Регулирование проводится в основном винтом качества смеси.

На режимах принудительного холостого хода (ПХХ), включающих торможение двигателем и замедление вращения коленчатого вала, мембранный механизм смещает клапан экономайзера принудительного холостого хода (ЭПХХ) до упора, перекрывая выходное отверстие и прекращая подачу топлива. Применение автономной системы с ЭПХХ снижает выброс СО и СН на 30–40 % и при испытании по городскому циклу уменьшает расход топлива на 4,5%, а также увеличивает эффективность торможения двигателем примерно на 25% (приведены «официальные» или «хрестоматийные» величины эффективности ЭПХХ – прим. Ред.). ЭПХХ также выполняет функцию «антидизель», т.е. при низкооктановом бензине предотвращается работа с самовоспламенением после выключения зажигания.

В К-151 топливо из канала главной дозирующей системы поднимается к эмульсионной трубке с топливным и воздушным жиклерами холостого хода. Пройдя через боковые отверстия в трубке и эмульсионный жиклер, оно в виде топливовоздушной эмульсии смешивается с дополнительным воздухом, поступающим через второй воздушный жиклер. Для обеспечения стабильности состава смеси при регулировании винтом количества в нижней части корпуса карбюратора система холостого хода имеет два канала. По первому из них эмульсия сквозь переходную втулку поступает в полость перед переходными отверстиями, а затем через сечение, регулируемое нижним винтом качества, в основной диффузор с винтом количества. По второму каналу в карбюраторах первых выпусков эмульсия проходила через сечение, регулируемое дополнительным (верхним) винтом качества. В арбюраторах последних выпусков этот винт заменен дозирующим отверстием в канале. Далее эмульсия поступает в дополнительный диффузор в корпусе дроссельных заслонок.

Система управления клапаном ЭПХХ К-151 (для «402-ых» моторов – прим. Ред.) состоит из электронного блока, включающего электропневмоклапан при снижении числа оборотов коленчатого вала ниже заданного и отключающего его при их увеличении свыше 1 500 мин –1 , и микровыключателя. В работе любых карбюраторов наибольшее число отказов происходит в системе холостого хода. Это не удивительно – ведь её топливный жиклер имеет очень маленькое сечение. Поэтому, если «пропал» холостой ход, то он – первый кандидат на продувку. Правда, прежде чем разбирать карбюратор, есть смысл провести простейшую диагностику.

Нужно снять наконечники проводов с микровыключателя и замкнуть их. Если двигатель заработал – значит вышел из строя электронный блок. Временно до его замены можно ездить, заизолировав замкнутые наконечники проводов. Если двигатель и после замыкания наконечников не работает, снимем шланг, идущий от задроссельного пространства, и подсоединим его напрямую к мембранному механизму ЭПХХ. Двигатель заработал на холостом ходу – значит необходимо заменить электропневмоклапан. Если двигатель опять не работает, то необходимо снять крышку мембранного механизма и проверить, свободно ли ходит клапан и не разорвана ли мембрана. При разорванной мембране можно отрезать кусочек шланга, разрезать его вдоль, подсунуть его под мембрану и надеть на шток клапана. Если двигатель работает неустойчиво или глохнет в начальный период открытия дроссельной заслонки, то регулируют или заменяют микровыключатель. Он должен замыкать контакты в самом начале поворота рычага привода дроссельной заслонки.

Проверка электронного блока может производиться подсоединением к нему вместо провода идущего к электропневмоклапану лампочки мощностью не более 3 Вт. Другой провод от лампочки подсоединяют к массе. Провод от микровыключателя необходимо отсоединить. При повышении числа оборотов свыше 1 200–1 500 лампочка должна гаснуть, а при их снижении до 900–1 000 снова загораться. В этом случае блок исправен.

Переходная система

При небольших углах открытия дроссельной заслонки уменьшается подача топливовоздушной эмульсии через систему холостого хода, а главная дозирующая система еще не вступила в действие. Смесь переобедняется, начинаются перебои воспламенения, появляется «провал». Для компенсации состава смеси используется переходная система, через которую поступает дополнительное топливо. Обычно переходная система представляет собой одно или несколько отверстий, а иногда и щель, соединяющих эмульсионный канал системы холостого хода со смесительной камерой в зоне верхней кромки дроссельной заслонки.

Причиной нарушения работы переходной системы может быть обеднение смеси из-за засорения топливного жиклера системы холостого хода, снижения уровня топлива в поплавковой камере. Причиной «провала» может быть и частичное засорение топливного жиклера холостого хода. Реже неустойчивая работа двигателя происходит из-за переобогащения смеси, например, при засорении воздушных жиклеров холостого хода и главной дозирующей системы.

Нарушение работы переходной системы вызывает неправильное положения отверстий. Если они просверлены со значительным смещением вверх, «провал» можно устранить, подпиливая снизу кромку дроссельной заслонки напротив них, если ниже – целесообразно подпилить кромку дроссельной заслонки сверху. Правда, прежде стоит должным образом выставить положение дроссельных заслонок и обойтись регулировками холостого хода. И браться за напильник нужно, убедившись в необходимости этой работы.

Регулировки карбюратора на минимум CO и CH

По действующему стандарту проверка токсичности в эксплуатационных условиях производится на холостом ходу полностью прогретого двигателя при минимальной (nхх мин) и повышенной (nпов) частотах вращения коленчатого вала. От правильной регулировки двигателя на этих режимах зависит не только загазованность воздуха, но и надежность работы системы зажигания, ездовые качества автомобиля, эксплуатационный расход топлива.

Карбюратор следует регулировать после любого вмешательства в двигатель (ремонт и промывка карбюратора, замена воздушного фильтра, изменение режима подогрева воздуха и др.). Перед регулировкой необходимо проверить систему зажигания (контакты прерывателя, зазоры свечей) и уровень топлива в поплавковой камере.

Проверку следует начинать с режима повышенной частоты вращения, выбираемой по инструкции завода изготовителя. Если таковой нет , то проверка ведется при 3 000 мин –1 . После установки режима необходимо выдержать до начала замера примерно 30 секунд. Концентрация СО и СН задается заводом-изготовителем. Если данных нет , то для двигателей автомобилей массой до 3,5 т без нейтрализатора концентрация СО не должна превышать 2%, а СН – 600 ppm. Для неизношенного двигателя нормальная регулировка соответствует 0,5–1% СО и 50–100 ppm СН. При невозможности отрегулировать СО необходимо проверить уровень топлива в поплавковой камере, продуть или прочистить жиклеры системы холостого хода и ГДС.

При повышенной концентрации СН (и нормальной концентрации СО) следует проверить систему зажигания. Причиной повышенного выброса СН зачастую бывает переобеднение смеси или повышенный угар масла.

Параметры карбюраторов К-151
МодельК-151К-151В К-151ГК-151ИК-151Д
Диаметр диффузоров, мм:
  • – большого
  • – малого
23/26
10,5/10,5
23/26
10,5/10,5
23/26
10,5/10,5
23/26
10,5/10,5
Диаметр смесительной камеры, мм32/3632/3632/36
Пропускная способность жиклеров, см3/мин:
главная дозирующая система:
  • – топливный
  • – воздушный
225/300
330/330
225/330
300/230
225/380
330/330
230/340
330/330
системы холостого хода и переходной системы 2-ой камеры
  • – топливный
  • – воздушный I
  • – воздушный II
  • – эмульсионный

95/150
85/280
330/270
1,1*

95/150
85/280
330/270
1,1*

95/150
85/280
330/270
1,1*

95/150
85/200
370/270
2,0*

топливный эконостата280280280Диаметр распылителя ускорительного насоса, мм0,40,40,40,35Производительность ускорительного насоса, см3/10 циклов7,5–12,55,0–9,010,0–14,0Пусковые зазоры, мм:
  • – воздушной заслонки
  • – дроссельной заслонки
1,4–1,7
1,1–1,31,4–1,7
1,1–1,31,4–1,7
1,1–1,3Уровень поплавковой камеры, мм20,0–23,020,0–23,020,0–23,020,0–23,0

Примечания. 1. В числителе указаны параметры первичной камеры, в знаменателе – вторичной.
2. Допуск на пропускную способность или условный диаметр дозирующих отверстий в среднем в пределах от 0,7 до 1,5%.
3. С индексом * условная маркировка жиклера (приблизительно диаметр мм).

После регулировки двигателя при nпов переходим на режим nхх мин. Для регулирования частоты вращения используется винт количества смеси. Соотношение элементов дозирующих систем К-151 подобрано таким образом, чтобы при вращении винта количества смеси её состав почти не изменяется. Винтом качества пользуются для регулирования состава смеси.

Если нет данных завода-изготовителя концентрация СО для двигателей без нейтрализатора не должна превышать 3,5%, а концентрация СН – 1 200 ppm. Перед регулировкой на СО необходимо винтом количества установить nхх мин. Затем винтом качества регулируем СО.

У двигателей с карбюраторами К-151 минимальный выброс СН соответствует концентрации СО 0,3–0,6%. Но для создания некоторого запаса с учётом возможных изменений состава смеси в процессе эксплуатации целесообразно винтом качества устанавливать концентрацию СО 0,7–1,0%. Концентрация СН при исправном двигателе находится в пределах 180–250 ppm.

В К-151 два воздушных жиклера холостого хода, причем второй жиклер малого диаметра засоряется особенно часто, что вызывает переобогащение смеси и соответственно увеличение концентрации СО. В них имеется также два эмульсионных канала холостого хода. В карбюраторах первых выпусков в каждом из этих каналов устанавливались винты качества смеси. У последних выпусков вместо второго винта качества делается калиброванное отверстие в нижней части корпуса. Часто это отверстие имеет слишком большую пропускную способность, поэтому, когда мы перекрываем винтом качества один канал, избыточное количество топлива, поступающего по второму каналу, вызывает повышенный выброс СО. В этих случаях необходимо уменьшить диаметр калиброванного отверстия, а иногда заглушить его полностью.

После регулировки холостого хода рекомендуется несколько раз нажать на педаль газа и проверить частоту вращения при отпущенной педали. Если она изменилась, то винтом количества уточнить регулировку карбюратора.

А если нет газоанализатора? С достаточной степенью точности отрегулировать карбюратор можно с помощью тахометра с ценой деления 25 или 50 мин –1 . На прогретом двигателе винтом количества устанавливаем nхх мин. Затем винтом качества выбираем регулировку, соответствующую максимальному числу оборотов. Винтом количества устанавливаем число оборотов на 14–20% выше nхх мин, т.е. при nхх мин=600 мин –1 устанавливаем примерно 680 мин –1 , а при nхх мин= 800 мин –1 nрег=950 мин –1 . Затем винтом качества уменьшаем число оборотов до nхх мин.

В дорожных условиях карбюратор можно отрегулировать и без тахометра. Винтом качества, вращая его по часовой стрелке, обедняем смесь до начала неустойчивой работы двигателя, затем, очень медленно вращая винт качества в обратном направлении, доходим до начала устойчивой работы двигателя. Иногда приходится несколько увеличить частоту вращения коленчатого вала винтом количества.

3.1 Назначение и устройство

Система смазки ЗМЗ-406 состоит из указателя уровня масла, масляного насоса с маслоприемником, масляных каналов, масляного фильтра, редукционного клапана, фильтра очистки масла, масляного картера, крышки горловины для заправки масла, масляного радиатора, предохранительного клапана и запорного крана.

Система смазки двигателя ЗМЗ-406 — комбинированная: под давлением смазываются коренные и шатунные подшипники коленчатого вала, поршневые пальцы, опоры распределительных валов, подшипники промежуточного вала и валика привода масляного насоса, гидротолкатели и винтовые шестерни. Остальные детали смазываются разбрызгиванием.

Масляный насос — шестеренчатый, односекционный с приводом от промежуточного вала посредством пары винтовых шестерен. В систему смазки встроены масляный радиатор и полнопоточный фильтр. На указателе уровня масла имеются метки: высшего уровня «П» и низшего уровня «О». Уровень масла должен находится вблизи метки «П», не превышая ее.

К рабочим поверхностям масло может подаваться под давлением, разбрызгиванием и самотеком. Выбор способа подачи масла к той или иной детали зависит от условий ее работы и удобства подвода смазки. В автомобильных двигателях применяют комбинированную систему смазки, при которой к наиболее нагруженным деталям смазка подается под давлением, а к остальным деталям — разбрызгиванием и самотеком.

3.2 Путь масла от насоса к клапанному узлу ГРМ

Из масляного фильтра по каналам в блоке масло подается к коренным подшипникам коленчатого вала и подшипникам распределительного вала, от коренных подшипников коленчатого вала по каналам в коленчатом валу масло подается к шатунным подшипникам, а от подшипников распределительного вала по каналам в головку цилиндров для смазки коромысел клапанов и верхних наконечников штанг.

3.3 Схема смазки на поперечном разрезе двигателя

Рисунок 4. Поперечный разрез двигателя ЗМЗ 406 (схема смазки)

1 – масляный насос; 2 – масляный картер; 3 – перепускной клапан масляного насоса; 4 – термоклапан; 5 – центральная масляная магистраль; 6 – масляный фильтр; 7, 8, 10, 11, 12, 14, 17, 18, 19 – каналы подачи масла; 9 – штуцер термоклапана отвода масла в радиатор; 13 – крышка маслоналивного патрубка; 15 – рукоятка указателя уровня масла; 16 – датчик сигнализатора аварийного давления масла; 20 – коленчатый вал; 21 – стержневой указатель уровня масла; 22 – отверстие подсоединения штуцера шланга подвода масла из радиатора; 23 – пробка слива масла

4.1 Назначение и устройство

Из названия ясно, что ускорительный насос обеспечивает разгонную динамику автомобиля.

Ускорительный насос служит для компенсации обеднения смеси при резком открытии дроссельной заслонки впрыскиванием дополнительного топлива в воздушный канал карбюратора. В этом случае рычаг, соединенный серьгой с тягой, воздействует на планку и перемещает поршень вниз. Давление топлива под поршнем повышается, и обратный клапан закрывается, препятствуя перетеканию его в поплавковую камеру. Через открывшийся нагнетательный клапан и распылитель в смесительную камеру дополнительно впрыскивается топливо. Горючая смесь кратковременно обогащается.

В К-151 ускорительный насос мембранного типа. С одной стороны у мембраны имеется пружина, обеспечивающая всасывание топлива, с другой – демпфирующая пружина. Период впрыскивания определяется характеристикой демпфирующей пружины, проходным сечением распылителя, жиклером дренажной системы. Закон впрыскивания определяется профилем приводного кулачка и соотношением длин рычагов. Для предотвращения впрыска топлива при малых перемещениях мембраны, например, при движении по неровной дороге, рабочая полость мембраны сообщается с поплавковой камерой перепускным каналом. Регулирование подачи топлива осуществляется иглой в жиклере перепускного канала или изменением проходного сечения форсунки.

4.2 Принцип действия системы

Из принципа работы двигателя видно, что для выполнения одного такта, при котором происходит сгорание рабочей смеси и расширение газов, необходимо три подготовительных такта: выпуск, впуск и сжатие. Совокупность процессов, происходящих в цилиндре во время его работы, в определенной последовательности (впуск, сжатие, рабочий ход, выпуск) называется рабочим циклом.

Первый такт-впуск – служит для наполнения цилиндра горючей смесью. Поршень перемещается от в.м.т. к н.м.т., клапан впускного отверстия открыт, а выпускного закрыт. Под действием разрежения горючая смесь заполняет полость цилиндра над поршнем.

Второй такт-сжатие – служит для подготовки рабочей смеси к воспламенению. Поршень перемещается вверх от н.м.т. к в.м.т., оба отверстия закрыты клапанами, объем, занимаемый рабочей смесью, уменьшается в 6,5-6,7 раз, смесь сжимается, и давление в цилиндре достигает 10-12 кГ/сж2. При этом рабочая смесь нагревается до 300-400° С.

Третий такт-рабочий ход (сгорание и расширение) – служит для преобразования энергии сжигаемого топлива в полезную механическую работу. Сжатая рабочая смесь воспламеняется электрической искрой; выделяемое при этом тепло нагревает газы до температуры 2200-2500° С. Расширяющиеся газы – создают давление в цилиндре над поршнем в 35-40 кГ/см2, под действием которого поршень перемещается вниз от в.м.т. к н. м.т. Оба отверстия при этом закрыты клапанами.

Четвертый такт-выпуск – служит для освобождения цилиндра от отработавших газов. Поршень перемещается вверх от н.м.т. к в.м.т., выпускное отверстие открыто, а впускное закрыто. В дальнейшем процесс работы двигателя беспрерывно повторяется в указанном порядке.

насос масло охлаждение поршневой

4.3 Возможные регулировки системы

Одной из причин ухудшения динамики автомобиля во время разгона является нарушение работы ускорительного насоса. Правильность работы ускорительного насоса проверить очень просто. Проверяют работу ускорительного насоса при снятой крышке карбюратора после регулировке уровня топлива. Его предварительную проверку можно выполнить без снятия карбюратора с двигателя. При резком открытии дроссельных заслонок из распылителя должна выходить ровная сильная струя бензина, достигающая каналов корпуса дроссельных заслонок без касания стенок диффузоров. Неравномерная и искривлённая струя свидетельствует о частичном засорении каналов распылителя и расположенного в нём нагнетательного клапана. При их исправности следует проверить чистоту и исправность диафрагменного механизма ускорительного насоса, разобрав его, как это описывалось выше.

Если струя короткая или ее вообще нет, то следует рассмотреть все возможные варианты неисправностей (табл. 1).

Таблица 1 – Неисправности в системе ускорительного насоса и их причины

Топливо из топливного жиклера ускорительного насоса не поступает

1. Засорился топливный жиклер ускорительного насоса

2. Шарик прилип к втулке обратного клапана

Струя из топливного жиклера ускорительного насоса короткая и вялая

1. Шарик завис и не опускается на втулку обратного клапана 2. Шарик вообще забыли положить

3. Могли забыть запрессовать перепускной жиклер ускорительного насоса

4. Негерметичность уплотнений диафрагмы между крышкой и корпусом карбюратора (часто из-за неплоскостности фланца на корпусе карбюратора)

Причинами нарушения работы насоса может быть попадание соринок в седло всасывающего или нагнетательного клапанов, но чаще всего – в распылитель (еще две распространенные причины – нарушение герметичности мембраны или заедание рычага).

Бывает, что из клапана распылителя ускорительного насоса выпадает свинцовая заглушка и, как следствие этого, шарик диаметром 2,38 мм. Клапан легко восстановить. Найдите любой шарик диаметром от 2 до 2,5 мм и обязательно шарик диаметром 3,17 мм, который запрессуйте в клапан вместо свинцовой заглушки. Качество гарантировано.

Доработка карбюратора к 151 – АвтоТоп

УАЗ – это легендарный автомобиль, который прославился не только среди военных, но и гражданского населения. Завод действительно не пожалел сил и времени на него. Он надежный, прост в обслуживании и ремонте, но требует постоянного внимания, так как является «рассадником» неполадок. Одним из больных мест является система питания. Регулировка такого сложного узла, как карбюратор К151 на УАЗе «Буханка» – не сложная процедура. Однако она требует правильной техники выполнения. Сегодня вы узнаете, как выполняется чистка и настройка, а также регулировка карбюратора к 151 на уазе.

Устройство карбюратора К 151

Карбюратор К 151 «Пекар» работает по той же схеме, что и аналогичные карбюраторы. Неизменной всегда остается задача по приготовлению топливовоздушной смеси с последующей подачей в цилиндры двигателя.

Конструктивно карбюратор состоит из следующих элементов:

  • Поплавковая камера;
  • Дроссельная заслонка;
  • Жиклеры;
  • Диафрагма;
  • Металлический корпус с крышкой;
  • Регулировочные винты.

В случае неисправности, карбюратор начинает работать некорректно. Это означает, что УАЗ в нашем случае «Буханка» начинает потреблять слишком много топлива или развивает не полную мощность. Бывают случаи, что двигатель может совсем не завестись. Чтобы устранить эту проблему, карбюратор нужно снять, осмотреть и настроить.

Схема карбюратора К 151

Пояснение к схеме:

  1. крышка;
  2. клапан разбалансированности поплавковой камеры;
  3. поплавок;
  4. воздушный жиклер переходной системы;
  5. эмульсионный жиклер переходной системы;
  6. винт крепления распылителя эконостата вторичной секции;
  7. воздушный жиклер главной дозирующей системы вторичной секции;
  8. распылитель эконостата;
  9. эмульсионная трубка главной дозирующей системы вторичной секции;
  10. выпускной шариковый клапан ускорительного насоса;
  11. распылитель ускорительного насоса;
  12. воздушная заслонка;
  13. малый диффузор первичной секции;
  14. воздушный жиклер главной дозирующей системы первичной секции;
  15. эмульсионная трубка главной дозирующей системы первичной секции;
  16. блок воздушного жиклера с эмульсионной трубкой системы холостого хода;
  17. эмульсионный жиклер системы холостого хода;
  18. воздушный жиклер холостого хода;
  19. регулировочный винт перепуска топлива системы ускорительного насоса;
  20. вытеснитель;
  21. корпус поплавковой камеры;
  22. перепускной жиклер ускорительного насоса;
  23. выпускной шариковый клапан ускорительного насоса;
  24. пружина;
  25. диафрагма ускорительного насоса;
  26. крышка ускорительного насоса;
  27. рычаг привода ускорительного насоса;
  28. главный топливный жиклер первичной секции;
  29. трубка;
  30. диафрагмы экономайзера принудительного холостого хода;
  31. клапан экономайзера;
  32. ограничительный колпачок;
  33. винт регулировочный состава смеси;
  34. отверстие в корпусе ЭПХХ;
  35. корпус экономайзера принудительного холостого хода;
  36. отверстие выходное системы холостого хода;
  37. винт эксплуатационной регулировки холостого хода;
  38. прокладки;
  39. отверстия переходные системы холостого хода;
  40. дроссельная заслонка первичной секции;
  41. кулачок привода рычага ускорительного насоса;
  42. ролик рычага ускорительного насоса;
  43. обводной канал системы холостого хода;
  44. дроссельная заслонка вторичной секции;
  45. прокладки;
  46. корпус смесительных камер;
  47. трубка подвода разрежения к электромагнитному клапану;
  48. трубка к вакуум-корректору;
  49. главный топливный жиклер вторичной секции;
  50. штуцер вентиляции картерных газов;
  51. электронный блок управления;
  52. микровыключатель;
  53. фильтр;
  54. электромагнитный клапан;
  55. штуцер;
  56. топливный фильтр;
  57. топливо подающая труба;
  58. пробка;
  59. язычок регулировки хода топливного клапана;
  60. топливный клапан;
  61. язычок регулировки уровня топлива в поплавковой камере;
  62. электропривод клапана разбалансировки поплавковой камеры.

Как снять карбюратор К 151 «Пекар» на УАЗе?

Для этого нужно зайти в салон автомобиля на водительское или пассажирское место спереди и открыть люк моторного отсека. Следующим этапом нужно снять воздушный фильтр. Для этого вначале откручиваются верхние гайки крепления, после чего, снимается сам фильтрующий элемент. Будьте осторожны и не уроните гайки в диффузор!

Теперь выкрутите гайки крепления корпуса фильтра. Поднимите ее вверх, отсоедините тонкий шланг и отложите корпус в сторону. Теперь отсоедините все тяги, связанные с дроссельной заслонкой. Чтобы не сломать пластиковые элементы, рекомендуется воспользоваться плоской отверткой.

Выкрутите крепления всех шлангов, удерживающих агрегат, и снимите их. Останутся четыре гайки, которые удерживают карбюратор на коллекторе. Открутите их и снимите агрегат.

Остались вопросы по снятию? Смотрим это видео:

Чистка карбюратора УАЗ

Перед настройкой, необходимо узел почистить. Для этого полностью разберите карбюратор: снимите верхнюю крышку и отделите дроссельную часть от диффузора.

Чистка производится при помощи специальных средств для очистки дроссельных заслонок или любой другой жидкости, предназначенной для этих целей. Также можно использовать бензин или керосин.

Чистка необходима 100%. Это избавит вас от проблем, связанных с загрязнением, и снимет необходимость делать это в ближайшее время. Поэтому выполнить ее нужно, чтобы выполнить профилактику неисправности.

Как регулировать уровень топлива в поплавковой камере

После сборки карбюратора нужно настроить уровень в поплавковой камере. Это то самое место, от которого зависит расход топлива автомобиля УАЗ «Буханка». Отрегулировать его можно своими руками в гараже. Для этого карбюратор устанавливается на штатное место, затягивается гайками, а верхняя крышка откручивается и просто прижимается рукой. Вставьте топливный шланг и подкачайте бензин при помощи ручного привода бензонасоса.

Уровень топлива в поплавковой камере

Теперь нужно поднять крышку и отложить в сторону, а при помощи линейки замерить уровень в камере. Он должен составлять 21 миллиметр. Если параметр отличается от номинального значения, то нужно выставить положение поплавка, при котором уровень всегда будет поддерживаться на заданном уровне, а игольчатый клапан будет в закрытом положении.

Чтобы это сделать, нужно:

  • Отогнуть регулировочные тяги поплавка;
  • Поставить крышку на место;
  • Повторить проверку уровня.

Цикл выполняется до тех пор, пока уровень в поплавковой камере не будет соответствовать норме. Кстати, посмотреть подробно, как это сделать можно и на видео. После того, как уровень станет номинальным, необходимо карбюратор собрать. На него устанавливаются все навесные элементы, кроме воздушного фильтра и его корпуса. Он будет мешать при регулировке привода воздушной заслонки. Монтаж производится в обратной последовательности.

Как отрегулировать воздушную заслонку карбюратор К-151?

Чтобы завести УАЗик в холодное время, нужно использовать пусковое устройство, которое представляет собой ручной привод воздушной заслонки. Суть такая, что при холодном пуске, необходимо вытащить рукоятку на себя, тем самым закрыть заслонку, и заводить двигатель. По мере прогрева рукоятку нужно постепенно возвращать в исходное положение.

Теперь нужно отрегулировать такое положение троса, при котором заслонка будет полностью открываться, и закрываться без заеданий. Для этого, полностью вытащите рукоятку на карбюраторном автомобиле и закройте заслонку вручную. Зафиксируйте положение троса, как на видео, и затяните гайку. Попробуйте открыть и закрыть заслонку. Система должна работать точно без заеданий. После этого можно приступать к настройке холостого хода.

Регулировка холостого хода карбюратора на УАЗе

К 151 «Пекар» не имеет винта качества, как его приемник ДААЗ 4178. Автомобиль не предусматривает установки тахометра, поэтому подключить его нужно будет самостоятельно на время выполнения работ. Теперь запустите мотор и прогрейте его до рабочей температуры.

Следующий порядок действий таков:

  • Как на видео, при помощи винта количества и винта регулировки дроссельной заслонки, выставите нужные обороты холостого хода.
  • Несмотря на отсутствие винта качества, система предусматривает обогащение и обеднение смеси путем регулировки количества подаваемого воздуха. Для этого установлен механизм регулировки положения дроссельной заслонки.
  • После того, как обороты составят 800-900 об/мин, необходимо винт качества закручивать до того момента, когда двигатель начнет немного поддергивать. Такой режим является самым экономичным и оптимальным, с точки зрения сохранения мощности и убережет от неисправности, связанной с запуском.

Остались вопросы по регулировке холостого хода? Тогда посмотрите этот видео материл поможет их развеять!

Схема снижения расхода на карбюраторе к-151

Расположение и обозначение жиклеров карбюратора к-151

В первую очередь нужно закупорить шланг, который идет от крышки клапанов в нижней части карбюратора после этих действий холостой ход станет стабильным.

Порядок действий по снижению расхода топлива на карбюраторе к 151:

  1. Требуется подогнать воздушные и топливные жиклёры.
  2. Провести настройку зажигания на грань детонации.
  3. Правильно отрегулировать холостой ход.

Большим винтом крутим примерно положенное количество оборотов.

После большим винтом понижаете обороты — не многим больше положенных ± 100. И выравниваете до нужного количества маленьким винтом.

Вот так выполняется снятие, установка и настройка карбюратора К 151 на УАЗе. Как видите, в этой процедуре нет ничего сложного и справиться с ней сможет любой начинающий водитель. Желаем удачи на дорогах!

Карбюратор серии К-151 выпускается отечественным предприятием «Пекар». Он соответствует всем современным стандартам, обеспечивая надёжность эксплуатации транспортных средств любого рода. Однако, как и любой другой узел автомобиля, карбюратор периодически нуждается в обслуживании и ремонте.

Устройство карбюратора К-151

Карбюратором оборудовано большинство отечественных автомобилей:

  • легковые автомобили «Волга» и ИЖ;
  • внедорожники УАЗ;
  • лёгкие грузовики «Газель» и «Соболь».

Основное его назначение — подготовка и регулировка состава топливно-воздушной смеси для двигателя внутреннего сгорания.

Карбюратор предназначен для подготовки и регулировки составп топливно-воздушной смеси для двигателя

Устройство карбюратора К-151 довольно сложное. Он состоит из следующих элементов:

основной корпус с поплавковой камерой;

второй корпус или корпус дроссельных заслонок, которые поворачиваются приводом от педали акселератора;

верхняя крышка поплавковой камеры, в которой находится запорный механизм, не позволяющий камере переполняться бензином, и воздушная заслонка для запуска холодного двигателя;

главная дозирующая система (ГДС), состоящая из жиклёров и топливных магистралей для приготовления топливно-воздушной смеси;

система холостого хода, необходимая для стабильной работы двигателя на холостых оборотах, состоящая из обводного канала, жиклёров и регулировочных винтов, а также клапана экономайзера с мембранным механизмом;

ускорительный насосный механизм, позволяющий автомобилю двигаться без провалов при резком ускорении и состоящий из дополнительных каналов в основном корпусе, шарикового клапана, мембранного механизма и распылителя топлива;

эконостат — система, предназначенная для обогащения двигателя топливно-воздушной смесью при резком увеличении оборотов;

переходная система, состоящая из топливных и воздушных жиклёров и обеспечивающая плавность увеличения оборотов в момент начала открытия дроссельной заслонки во вторичной камере.

Устройство карбюратора К-151 довольно сложное

К-151 имеет две камеры. Дроссельные заслонки в процессе работы открываются поочерёдно. Это гарантирует бесперебойную подачу топлива. При поступлении в карбюратор топливо проходит сквозь штуцер, в который вмонтирован сетчатый фильтрующий элемент. Эта сеточка очищает бензин от примесей и грязи. Излишки топлива через топливный шланг поступают обратно в бензобак. Всё это позволяет поддерживать в топливной системе необходимое давление.

Познакомился с карбюратором Пекар К151 я после покупки автомобиля Волга(Газ 2410). Ну что могу сказать? Карбюратор выпускает АО «Пекар» (Петербургские карбюраторы) и предназначен для установки на автомобили «Волга», «Газель» (модификация К-151). Волга я вам скажу конечно престижная машина отечественного производства, но не экономичная, насчёт горючего… И в этом не последнюю роль играет карбюратор. Конечно К151 более экономичней, чем К-126, который выпускался ранее, прибавилась мощность, но есть конечно и недостатки, они по моему присутствуют во всех отечественных изделиях. Жиклёрам свойственно засоряться, и поэтому приходится чистить их (не реже одного раза за два месяца). А так для отечественного авто, вполне нормальный карбюратор.

Mihail74

http://otzovik.com/review_728025.html

Серьёзным преимуществом К-151 является наличие подсоса. Система управления холодным пуском двигателя на автомобилях с К-151 работает раздельно. Поэтому иногда холодный пуск может быть затруднён. Во избежание подобных проблем между полумесяцем пускового устройства и регулировочной пяткой дроссельной заслонки протянута проволока. Эта проволока создаёт сцепление между двумя раздельными механизмами и гарантирует быстрый запуск двигателя.

При этом подсос можно регулировать, выставляя нужные значения в зависимости от погодных условий.

Модификации

В рамках серии К-151 выпускается несколько модификаций карбюраторов. Все они имеют одинаковый принцип работы, но отличаются техническими характеристиками.

Таблица: параметры карбюраторов серии К-151

Модификация определяется мощностью двигателя.

Основные неисправности и их устранение

Элемент неисправен если:

увеличивается расход топлива;

выхлопные газы приобретают тёмно-серый или чёрный цвет, особенно это заметно при резком нажатии на педаль акселератора;

автомобиль теряет динамику («тупит») при разгоне;

двигатель нестабильно работает на холостом ходу.

Чаще всего возникающие проблемы обусловлены загрязнением жиклёров — как воздушных, так и топливных — из-за некачественного бензина.

Другой причиной некорректной работы устройства может стать перегрев его корпуса. Металл деформируется и устройство уже не может работать в обычном режиме.

Кроме этого, неисправности могут быть связаны с износом одного или нескольких элементов карбюраторного механизма.

Двигатель глохнет на холостом ходу

Наиболее часто причиной нестабильной работы двигателя на холостом ходу является вышедший из строя экономайзер.

Часто причиной нестабильной работы двигателя на холостом ходу является неисправный экономайзер

Иногда может быть неисправен и сам блок холостого хода.

В этих случаях следует снять устройство с автомобиля, разобрать его и визуально оценить работоспособность указанных элементов. Повреждения экономайзера или блока холостого хода будут видны невооружённым глазом.

Карбюратор заливается бензином

Причиной избытка топлива в карбюраторе может стать игольчатый клапан. В зависимости от износа иголки клапан может перестать удерживать бензин. Так как сам клапан находится в поплавковой камере, в этом случае необходимо будет разобрать механизм. Потребуется выполнить ряд действий в следующем порядке:

С карбюратора снимается верхняя крышка.

Отворачивается винт, фиксирующий ось поплавка.

Корректируется ось и восстанавливается положение поплавка в камере.

Ключом на 10 выворачивается клапан и заменяется на новый.

Ось поплавка и верхняя крышка устанавливаются на место.

Игольчатый клапан обеспечивает дозированную подачу бензина

Замерзание

Карбюраторный двигатель даже при небольшом похолодании (до -10ºС) невозможно запустить без предварительного прогрева. Во избежание этого опытные автолюбители протягивают тонкую медную проволоку между пусковым устройством и регулятором дроссельной заслонки. В результате устройство прогревается намного быстрее.

Чего ты ещё от К-151 хочешь? Хорошо хоть так работает!А если серьёзно: болячка проявилась только сейчас? Т.е. в холодную погоду? Я это к чему: у К-151 нет подогрева блока холостого хода. Видел его инеем зимой покрытым? А 5–8 мин на ХХ достаточно для обмерзания. Мой 151, благополучно выкинутый много лет назад, тоже не реагировал на состав смеси(точнее делал это так как хотел он, а не я

Сергей Анатольевич

http://forum.uazbuka.ru/showthread.php?t=9222

Тюнинг

Несложная доработка может оптимизировать его работу и заметно продлить срок службы. Для этого на холодном двигателе нужно выполнить следующие операции.

Из карбюратора выкручивается пробка топливного жиклёра.

Тонкой медной проволокой из гнезда достаётся сам жиклёр.

Снимается жиклёр с электромагнитного клапана.

Отверстие в жиклёре увеличивается на 0.05–0.1 мм в зависимости от модификации.

Доработанный жиклёр закручивается на клапан.

Снятое устройство возвращается на место.

Увеличение пропускной способности жиклёров улучшает динамику автомобиля

При этом нужно обязательно заменить резиновый уплотнитель клапана. Прокладка электромагнитного клапана — наиболее уязвимое место карбюраторов серии К-151.

Увеличение пропускной способности топливного жиклёра заметно улучшит динамику автомобиля.

Аналогичным образом можно доработать воздушный жиклёр.

Ремонт карбюратора К-151

Для ремонта необходимо знать порядок разборки и сборки механизма.

Разборка

Полная разборка обычно не требуется. Тем не менее ознакомление с порядком её проведения будет полезно любому автолюбителю. Для этого потребуются следующие инструменты:

тонкие пассатижи или плоскогубцы;

рожковый ключ на 12;

рожковый ключ на 22;

Для разборки карбюратора следует выполнить следующие действия:

    Откручиваются четыре гайки и устройство целиком снимается со шплинтов.

Корпус с внешней стороны тщательно очищается от грязи с помощью бензина или керосина и тонкой кисточки. В продаже имеются специальные средства для чистки карбюраторов.

Корпус карбюратора с внешней стороны тщательно очищается от грязи

Плоской отвёрткой отворачиваются семь винтов крепления крышки карбюратора. Крышка снимается.

Из полости карбюратора тонкими пассатижами вынимается шплинт и тяга пускового элемента.

Снимается пружина возврата с заслонки воздуха.

Отвёрткой отворачиваются два винта крышки поплавковой камеры. Крышка снимается с корпуса камеры вместе с резиновым уплотнителем.

Отвёрткой отворачивается винт-держатель и из камеры удаляется распылитель эконостата и его прокладка.

С пускового устройства снимаются крышка, пружинка и диафрагма.

Вытаскивается пробка поплавка и сам поплавок с иглой вынимается из камеры.

Рожковым ключом на 12 отворачивается место посадки игольчатого клапана поплавкового механизма.

Рожковым ключом на 22 отворачивается крепёжный винт штуцеров фильтра топлива.

Из полости карбюратора вынимается топливный фильтр вместе с прокладками и крепежом.

Рожковым ключом на 12 откручивается и вынимается сама поплавковая камера.

Гаечным ключом на 12 отворачивается и снимается поплавковая камера

С помощью тонкой проволоки или шила вынимаются воздушные и топливные жиклёры.

Откручивается топливный блок карбюратора, затем — блок холостого хода.

После снятия жиклёров откручивается топлиынй блок карбюратора

Куском тонкой проволоки или шилом вынимаются жиклёры ГДС.

Откручиваются четыре винта и вынимается ускорительный насос.

Карбюратор переворачивается и отвёрткой откручиваются два винта крепления блока дроссельных заслонок.

Из корпуса выворачиваются винты качества.

Видео: разборка К-151

Полная разборка карбюратора осуществляется при его промывке.

Для металлических частей используются растворители 644–652. Резиновые и пластмассовые элементы чистятся отдельно от металлических специальными чистящими средствами или обычным бензином. Жиклёры чистят тонкой медной проволокой или зубочистками.

При замене износившихся деталей карбюратора на новые категорически запрещено использование герметика для их фиксации.

Сборка

При сборке карбюратора следует быть предельно внимательным. Это обусловлено многочисленными мелкими деталями, каждую из которых необходимо установить на своё место.

Порядок сборки К-151 следующий:

В пустой корпус перевёрнутого карбюратора вкручиваются винты качества и два винта крепления дроссельных заслонок.

Карбюратор переворачивается, в полость устанавливается насос-ускоритель и двумя винтами прикручивается к чашке корпуса.

В свои гнёзда вворачиваются жиклёры главной дозирующей системы.

Подсоединяется блок холостого хода и топливный блок.

Топливные и воздушные жиклёры аккуратно устанавливаются в предназначенные для них отверстия.

Устанавливается и закрепляется поплавковая камера.

В полость чашки устанавливается и фиксируется топливный фильтр, подсоединяется штуцер.

На место возвращается игольчатый клапанный механизм.

Вставляются поплавок и игла.

К пусковому механизму подсоединяются диафрагма и пружинка, механизм закрывается крышкой и фиксируется.

Эконостат вставляется на своё место и прикручивается к корпусу.

К корпусу поплавковой камеры привинчивается её крышка.

На воздушную заслонку устанавливается пружинка возвратного механизма.

На своё место возвращается шплинт карбюратора.

Крышку устанавливается на место и тщательно прикручивается.

Видео: сборка К-151

Подключение шлангов, трубок и проводов

К установленному на двигатель карбюратору нужно подсоединить шланги, трубки и провода. Это тоже довольно трудоёмкая процедура. Чтобы не ошибиться, шланги, трубки и провода при демонтаже карбюратора следует подписать или пометить.

Подключения выполняются в следующей последовательности:

Сначала к поплавковой камере карбюратора подсоединяется самый крупный патрубок подачи топлива.

Шланг возврата топлива подключается к самому нижнему отводу карбюратора, с противоположной от мотора стороны.

Два тонких шланга идут в разных направлениях: один к клапану экономайзера, второй на заслонки дросселя.

Подсоединяется шланг вакуумника.

Последним к верхнему выводу карбюратора присоединяется шланг принудительной вентиляции.

Видео: подключение шлангов

Таким образом, карбюратор серии К-151 можно отремонтировать, почистить и доработать самостоятельно. При этом рекомендуется помечать все соединения и детали, чтобы не перепутать их при сборке. Промывку и чистку карбюратора с полной разборкой следует проводить не реже, чем раз в год. В этом случае он прослужит максимально долго.

Доброго времени суток, всякому читающему мой БЖ.
Здесь я распишу про доработку своего к151с.
Все, что описано здесь, это отнюдь не научные открытия, а просто факты. Опытные люди занют про это, и меня научили (в частности пытаюсь перенять опыт своего отца). Мало ли, вдруг кто-то что-то новое узнает.

Предисловие: Я свой мотор выше 4000 тысяч оборотов не кручу ВООБЩЕ! Поэтому ВСЕ что здесь написано не делает из Волги гоночный боллид, а скорее направлено на устойчивую, безотказную работу карбюратора.

1) ИГОЛЬЧАТЫЙ КЛАПАН
Я не знаю как у вас, а что у меня на к151С, что у отца на к151В западает игла. Все дело в его убогой конструкции и с этим ничего не поделать.

2) РАСПЫЛИТЕЛЬ УСКОРИТЕЛЬНОГО НАСОСА
На 151С так называемый «носик» — двойной, одновременно льет в обе камеры. НО: втормчная камера начинает работать при отрытии первой камеры на 2/3, т.е. в моем случае практически никогда (редко когда жму тапку в пол, обычно не более половины хода педали).

3) РАСПЫЛИТЕЛЬ ПЕРВИЧНОЙ КАМЕРЫ
Эта идея была взята у этого человека. Евгений Травников

Подробнее все можно узнать в группе в ВК : Теория ДВС

В моем же случае мне помог Руслан , за что ему низкий поклон, отдавший мне один ДААЗ на растерзание))))

Он был разобран, а интересующая меня железка извлечена, отмыта карбклинером, надфилем была придана более-менее «крыловидная» форма, зашкурено нулёвкой (можно было бы и пастой Гои полирнуть, но это уже лишка, т.к. это даст толк только на высоких оборотах, для меня же и этого вполне хватает).

Малый винт — крутите в обе стороны до достижения максимума оборотов.
МодельК-151К-151В К-151ГК-151ИК-151Д
Диаметр диффузоров, мм:
  • большого;
  • малого.
23/26
10,5/10,5
23/26
10,5/10,5
23/26
10,5/10,5
23/26
10,5/10,5
Диаметр смесительной камеры, мм32/3632/3632/36
Пропускная способность жиклёров, см 3 /мин:
Главная дозирующая система:
  • топливный жиклёр;
  • воздушный жиклёр.
225/300
330/330
225/330
300/230
225/380
330/330
230/340
330/330
Система холостого хода и переходная система второй камеры
  • топливный жиклёр;
  • первый воздушный жиклёр;
  • второй воздушный жиклёр;
  • эмульсионный жиклёр.
Топливный жиклёр эконостата280280280
Диаметр распылителя ускорительного насоса, мм0,40,40,40,35
Производительность ускорительного насоса, см 3 /10 циклов7,5–12,55,0–9,010,0–14,0
Пусковые зазоры, мм:
  • воздушной заслонки;
  • дроссельной заслонки.
1,4–1,7
1,1–1,3
1,4–1,7
1,1–1,3
1,4–1,7
1,1–1,3
Уровень поплавковой камеры, мм20,0–23,020,0–23,020,0–23,020,0–23

Карбюраторы и детали к ним

РЕГУЛИРОВКА КАРБЮРАТОРА ДВИГАТЕЛЕЙ ЗМЗ-4025, ЗМЗ-4026, ЗМЗ-4061 И ЗМЗ-4063.

1.Уровень топлива в поплавковой камере регулируют при снятой крышке карбюратора. Однако можно, не отсоединяя тягу пускового механизма, вывернуть винты крепления крышки, приподнять ее и, вынув прокладку, повернуть крышку в сторону, насколько это позволят сделать зазоры в местах крепления
тяги. Подкачайте бензин в поплавковую камеру рычагом ручной подкачки топливного насоса до момента, когда уровень стабилизируется. Расстояние от уровня топлива до верхней плоскости корпуса карбюратора должно составлять 21,5 мм (см. табл. 5.16). При уровне топлива ниже указанного необходимо подогнуть
вверх язычок А поплавка, упирающийся в хвостовик иглы запорного клапана. При повышенном уровне подогните язычок вниз. После каждого подгибания язычка нужно, отвернув сливную пробку поплавковой камеры слить из нее бензин и,завернув пробку на место, повторно накачать бензин рычагом ручной
подкачки топливного насоса.
2 .Пусковое устройство можно отрегулировать непосредственно на автомобиле. Полностью прогрейте двигатель и подключите к нему тахометр. Пустите двигатель со снятым воздушным фильтром и,слегка нажав на педаль акселератора, полностью закройте воздушную заслонку вытянув ручку ее привода. Затем отверткой приоткройте воздушную заслонку настолько, насколько это позволит рычажный механизм. Частота вращения коленчатого вала двигателя при этом должна составлять 2500-2700 мин-1. Если частота вращения
не попадает в указанный интервал нужно, ослабив контргайку ввертывать или вывертывать регулировочный винт, упирающийся в профилированный рычаг По окончании регулировки контргайку плотно затяните

3 .Система холостого хода регулируется на прогретом двигателе с подключенным к нему тахометром. Для этого на работающем двигателе установите винт качества Б в положение, при котором обеспечивается
максимальная частота вращения коленчатого вала на холостом ходу. Затем винтом количества А установите частоту повышенную на 100-120 мин-1. После этого вверните винт качества до снижения частоты вращения коленчатого вала на 100-120 мин-1. Такой способ регулировки позволяет уложиться в нормы токсичности выхлопа. Однако более точную регулировку рекомендуется проводить с помощью газоанализатора.
4 .Ускорительный насос не имеет регулировочных элементов, но после регулировки уровня топлива в поплавковой камере при снятой крышке карбюратора нужно обязательно проверить работоспособность насоса. При резком открытии дроссельных заслонок из распылителя ускорительного насоса должна выходить ровная, сильная струя бензина, достигающая дроссельных заслонок без касания стенок диффузоров. Неравномерная и искривленная струя или ее отсутствие свидетельствуют о засорении каналов распылителя, топливоподводящ его винта распылителя и расположенного в нем нагнетательного клапана. При их исправности проверьте чистоту и исправность диафрагменного механизма ускорительного насоса, разобрав
его, как это описывалось ранее.

 

Настройка карбюратора и регулировка оптимального холостого хода на обедненной смеси

Важно соблюдать все инструкции по установке рычагов и рычагов. Причины номер один и две для ошибок настройки — неправильная установка рычага и чрезмерно затянутая гайка рычага, вызывающая заедание в узле рычага.

КАЛИБРОВКА МОЖЕТ РАЗЛИЧАТЬСЯ В ЗАВИСИМОСТИ ОТ РЕГИОНАЛЬНОГО ТОПЛИВА, НАСТРОЙКИ И РАБОТЫ ДВИГАТЕЛЯ. НИЗКОЕ КАЧЕСТВО РАБОТЫ НЕ ОЗНАЧАЕТ ДЕФЕКТ КАРБЮРАТОРА. ПРЕИМУЩЕСТВО WEBER CARBURETOR — ПРОСТОТА РЕГУЛИРОВКИ И НАСТРОЙКИ.

НАСТРОЙКИ НАСТРОЙКИ

Начните настройку, подтвердив настройки базовой линии карбюратора. Не зависите от заводских настроек. Проверьте их перед установкой карбюратора.

  1. Все настройки выполняются при отключенной или прогретой заслонке, так что заслонка полностью открыта и отключена. Это делается на карбюраторах с автоматической воздушной заслонкой, сначала открывая дроссельную заслонку вручную и вставляя какой-либо деревянный брусок или клин, чтобы удерживать ее в открытом положении, пока рычажный механизм переключается (рычажный механизм приводится в действие полностью), чтобы очистить кулачок воздушной заслонки.(Вы услышите металлический щелчок при отпускании кулачка. Вы можете проверить винт быстрого холостого хода под узлом воздушной заслонки, чтобы убедиться, что он не контактирует с кулачком быстрого холостого хода воздушной заслонки.)

  2. Установите стопорный винт холостого хода (скорость (см. рис. 1), открутив винт холостого хода до тех пор, пока он не перестанет касаться рычага остановки дроссельной заслонки. Снова включите рычажный механизм, чтобы убедиться, что он замыкается без посторонней помощи. (Проверка на заедание рычага). Теперь верните винт обратно в контакт с рычагом и продолжайте открывать или ввинчивать на 1 оборот не более чем на 11/2 оборота.

  3. Установите шнек для смеси (см. Рис. 1), сначала закручивая винт до упора, до упора. НЕ ПРИСОЕДИНЯЙТЕ И НЕ ПРИСОЕДИНЯЙТЕ, ЭТО ПРИВЕДЕТ ПОВРЕЖДЕНИЕ ВИНТА И ЕГО СЕДЛА В КОРПУСЕ КАРБЮРАТОРА. Выверните винт на 2 полных оборота.

  4. НАСТРОЙКА
    ОБЯЗАТЕЛЬНО СОБЛЮДАЙТЕ СЛЕДУЮЩИЕ ИНСТРУКЦИИ В ПРАВИЛЬНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ, ОТКЛОНЕНИЕ ПРИВЕДЕТ КАРБЮРАТОР НЕ РАБОТАТЬ ПО ИДЕАЛЬНЫМ ТЕХНИЧЕСКИМ ХАРАКТЕРИСТИКАМ И МОЖЕТ НЕ ОБЕСПЕЧИТЬ РАЗРАБОТАННЫЕ ХАРАКТЕРИСТИКИ И ЭКОНОМИЧНОСТЬ ТОПЛИВА.

4а. Запустите двигатель, двигатель будет работать очень медленно, как трактор. Пока двигатель работает на холостом ходу, это не важно.

4б. Первое, что нужно сделать, — это не настраивать обороты холостого хода, а установить винт смеси холостого хода на оптимальную обедненную смесь на холостом ходу. Сначала заворачивайте винт подачи смеси до тех пор, пока двигатель не заглохнет или не начнет работать хуже, затем отверните винт (рекомендуется поворачивать на ¼ до ½ оборота за раз). Двигатель должен набрать обороты и начать плавное сглаживание.Отверните еще на ½ оборота или до тех пор, пока винт не перестанет работать или не будет работать хуже, затем поверните обратно в точку, в которой он работал лучше всего. На этом этапе используйте ухо, а не прицел или инструменты для настройки. Вы хотите настроить двигатель по звуку. Настройте лучшую, самую быструю и плавную работу.

4с. Теперь, когда винт смеси находится в наилучшем положении для работы, вы можете отрегулировать скорость холостого хода винта. Винт будет чувствительным и должен сделать всего от ¼ до ½ оборота, чтобы достичь желаемой скорости холостого хода. Проверьте и установите холостой ход в соответствии с вашими предпочтениями вождения.Включите передачу, приложите небольшую нагрузку (включите кондиционер) и установите холостой ход, как вам нравится. Не устанавливайте его слишком высоко, так как это приведет к чрезмерному износу сцепления и тормозов. Холостой ход должен составлять от 7 до 900 об / мин при небольшой нагрузке или включенном переменном токе.

5. Еще раз проверьте синхронизацию и вакуумные соединения. Перепроверьте винт смеси, чтобы снова получить обедненную смесь на холостом ходу. Если все по-прежнему хорошо и плавно на холостом ходу, подтвердите и запишите окончательные настройки. Подтвердить настройки при работающем двигателе. Начните с ввинчивания винта для подачи смеси и подсчитайте количество оборотов, которое нужно сделать, чтобы выйти на дно, и обратите внимание, если двигатель заглохнет.Если винты смеси холостого хода повернуты на ½ оборота базовой линии, то все в порядке и получайте удовольствие. Также проверьте регулировочный винт и отметьте, сколько всего оборотов от первоначального контакта. Возможно, вы открыли (повернули) винт регулировки скорости. Окончательная настройка должна быть менее 2 полных оборотов. Верните винты (обратно) до лучших окончательных настроек (в соответствии с вашими примечаниями), пройдите тест-драйв и получайте удовольствие. Если настройки отличаются от описанных, возможно, вы захотите повторно откалибровать цепь холостого хода (цепь низкой скорости) в соответствии с потребностями вашего двигателя.Это делается, следуя практическому правилу НИЖЕ.

Простые правила для калибровки низкой скорости

Если винт смеси больше 2 1/2 оборота, значит, жиклер холостого хода слишком бедный (слишком маленький). Когда винт смеси меньше 11/2, жиклер холостого хода слишком богатый (слишком большой). Эти предположения основаны на том факте, что регулировочный винт скорости не открывается более чем на 11/2 оборота. Если необходимо открыть регулировочный винт на 2 или более оборота, это также указывает на обедненную смесь, обычно требующую большего изменения.Иногда может показаться, что оно проявляет признаки насыщения или затопления, на самом деле это худое состояние. См. Изображения и примечания в технической статье 2, поставляемой в инструкциях к набору, просмотрите и, пожалуйста, поймите, что дроссельная заслонка должна быть как можно ближе к закрытой, чтобы не открывать переходные отверстия преждевременно. Это вызывает видимое богатое состояние и подтверждает необходимость увеличения размера жиклера.

ПРИМЕР: Регулировочный винт установлен на не более (1 1/2) оборота после контакта с стопорным рычагом; и лучший холостой ход, когда шнек смеси установлен на 3 оборота снизу, указывает на необходимость большего жиклера холостого хода.Достижение наилучшего холостого хода при менее чем 2 оборотах указывает на необходимость меньшего жиклера холостого хода.

Секрет понимания критического характера настройки карбюратора и преимуществ WEBER по сравнению с другими карбюраторами — это схема холостого хода. Эта цепь, которую Вебер называет низкоскоростной цепью, отвечает за 80% работы двигателя. Это причина того, что Weber должен дать улучшение экономии топлива по сравнению с большинством заводских карбюраторов наряду со значительным приростом производительности. В худшем случае вы не должны увидеть значительных потерь в экономии топлива по сравнению с запасом, одновременно улучшая HP и управляемость.

Как отрегулировать ускорительный насос на карбюраторе Holley

Хотя карбюратор не использовался в двигателях серийных автомобилей в США почти 25 лет, они по-прежнему пользуются бешеной популярностью как в уличных, так и в гоночных приложениях для энтузиастов. Для тех, кто предпочитает использовать карбюратор на улице, есть несколько факторов, которые влияют на плавность работы, но с небольшой осторожностью карбюратор Holley обеспечит вам ежедневную беззаботную поездку на работу, в то же время позволяя хулиганить по требованию. .

В этом коротком видео Том Кисе из Холли рассказывает, как правильно отрегулировать систему ускорительного насоса на одном из карбюраторов компании. Как следует из названия, ускорительный насос обеспечивает дополнительное топливо при разгоне двигателя, в то время как первичный контур догоняет потребность. Таким образом, плохо настроенная цепь ускорительного насоса может привести к замедлению работы на холостом ходу.

В видео Кисе использует двойной насос Holley (с подачей топлива на каждом конце) в качестве демонстрационного инструмента, но уверяет нас, что карбюратор с одним ускорительным насосом будет отрегулирован таким же образом.

Первичная и, возможно, самая важная регулировка — поскольку все остальное основано на ее правильности — это соединение рычага акселератора с рычагом ускорительного насоса. Вам нужны нулевые плети и нулевое предварительное натягивание, что является отличной чертой для ходьбы.

«На самом деле мы пытаемся добиться правильного соотношения между регулировочным болтом на рычаге ускорительного насоса и фактическим рычагом ускорительного насоса», — говорит Кисе. «В идеале мы хотели бы, чтобы это было нулевым ударом и нулевым предварительным натягом на холостом ходу.Мы также хотим проверить его при полностью открытой дроссельной заслонке и убедиться, что осталось не менее 0,015 дюйма хода, чтобы убедиться, что мы не достигли дна диафрагмы насоса ».

Опускание диафрагмы ускорительного насоса может со временем привести к ее повреждению или даже к разрыву самой диафрагмы, что может вызвать утечку топлива и связанные с этим головные боли.

Первый шаг — отрегулировать рычаг включения ускорительного насоса и рычаг насоса. Для этого вы можете использовать гаечный ключ с открытым зевом и отвертку для гаек или пару гаечных ключей.После того, как вы удалили все слабины из зацепления при закрытой системе, следя за тем, чтобы не передать предварительную нагрузку на рычаг, вы затем вставляете 0,015-дюймовый щуп и проверните карбюратор, чтобы полностью открыть дроссельную заслонку.

«Вы хотите убедиться, что диафрагма не доходит до дна, и что в руке остается небольшой ход», — говорит Кисе. «Один из способов визуальной проверки — это посмотреть, есть ли зазор между регулировочной гайкой и рычагом. Если есть пробел, значит, вы достигли дна, и вы определенно этого не хотите.”

После того, как вы правильно отрегулировали рычаг ускорительного насоса, вы можете переходить к другим областям регулировки в контуре ускорительного насоса.

«У нас есть ассортимент кулачков ускорительного насоса, которые представляют собой разноцветные кулачки, на которых движется хвост ускорительного насоса», — говорит Кисе. «Вы можете изменить эти кулачки, чтобы отрегулировать общее время срабатывания вторичного насоса, а также его агрессивность».

После регулировки и вставленного щупа 0,015 дюйма необходимо проверить соединение при полностью открытой дроссельной заслонке, чтобы убедиться, что диафрагма насоса не достигает дна, что может привести к повреждению самой диафрагмы.

Далее идет более сложный процесс замены напорных патрубков ускорительного насоса. Хотя это видео выходит за рамки этого видео, Kise предлагает несколько быстрых советов о том, как подобрать размер этих форсунок, если у вас все еще есть проблема после того, как ваш рычаг ускорительного насоса был правильно отрегулирован.

«Как только вы отрегулируете рычаг ускорительного насоса и обнаружите, что у вас есть нестандартные колебания, если они стоят меньше секунды, вы можете увеличить на один размер сопло ускорительного насоса», — говорит Кисе.«Если это секунда или больше, я бы поднялся на два размера. И наоборот, если эти изменения не сработают, возможно, вам придется пойти в обратном направлении. Если регулировка форсунок ускорительного насоса в обоих направлениях, кажется, вообще не влияет на спотыкание, вероятно, это не из-за карбюратора ».

Контроль излучения Черенкова с помощью самоускоряющихся волновых пакетов

Подводный ядерный реактор часто окружен характерным голубым свечением. Основополагающий принцип, связанный с таким прекрасным явлением, — это сохранение продольного импульса (или фазовый синхронизм) между диполями, индуцированными в воде движущейся заряженной частицей (испускаемой из ядерного реактора) и электромагнитным излучением 1 .Это традиционное проявление черенковского излучения, хорошо известное в области физики элементарных частиц (Нобелевская премия 1958 г.), на самом деле является фундаментальным и универсальным явлением, опосредованным излучением движущегося источника. Действительно, аналоги Черенкова появляются во многих областях, от лодочных волн и звуковых ударов в классических системах до новых дисциплин, таких как плазмоника 2 или спинтроника 3 . Особенно актуальные примеры можно найти в нелинейной оптике, включая параметрические процессы типа Черенкова 4 и излучение дисперсионных волн (DW) в волоконной оптике 5 , где роль излучателя играют нелинейно наведенные диполи.В этой структуре одним из основных применений этого явления является реализация новых электромагнитных источников, которые в настоящее время широко используются для генерации суперконтинуума, терагерцовых волн 6,7,8 , а также встроенных частотных гребенок 9 . В этих процессах диполи, возбуждаемые, например, частицей или волновым пакетом, движущимся в среде с достаточно высокой, но постоянной скоростью, излучают сферические волны (предполагается, что одна частота) в каждом продольном положении.Интерференция этих волн приводит к образованию конуса излучения, в котором последний возбужденный диполь всегда находится на вершине (рис. 1 (а)). Обратите внимание, что направление испускаемого излучения определяется соотношением cos θ = c / ( nv п. ), где θ берется относительно движения частицы, c — скорость света в вакууме, n — показатель преломления среды и v п. — скорость заряженной частицы.Для практических приложений часто требуются дополнительные оптические дифракционные / диспергирующие элементы (например, линзы и призмы) для концентрации излучения, которое в противном случае расходится. В качестве альтернативы можно использовать специально разработанные диэлектрические / металлические конструкции для формирования и управления черенковским излучением 10,11,12,13 . Эти методы имеют свои внутренние недостатки, если ограниченное пространство является проблемой или также важен динамический контроль.

Рис. 1

Схематическое изображение процесса, приводящего к испусканию черенковского излучения.Индуцированный диполь движется с постоянной скоростью ( a ) или с ускорением ( b ).

Хотя многочисленные работы были нацелены на эффективное управление черенковским излучением 10,11,12,13 , обычно считается, что если индуцированное дипольное возбуждение движется с постоянной скоростью (рис. 1 (а)), такая цель сложно или даже невозможно достичь в однородной среде 11 без использования каких-либо внешних оптических компонентов. Тем не менее, если дипольное возбуждение ускоряется (т.е., v п. зависит от расстояния), направление, в котором излучается излучение (характеризуемое θ ), изменяется по мере распространения, учитывая сходящиеся / расходящиеся лучи, как показано на типичном случае, изображенном на рис. 1 (b) (здесь один частота принята для простоты). Однако в этом случае заряженная частица или волна накачки, вызывающая диполи, также должна ускоряться, что часто требует использования внешних сил и / или реализации сложных установок 14, 15 .Формирование излучения такого рода могло иметь место в предыдущих исследованиях, но не было ни четко обнаружено (то есть, как правило, скрыто другими динамиками излучения), и, насколько нам известно, не сообщалось. Вероятно, это связано с отсутствием контролируемого ускорения, связанного с зарядами или насосами.

Как установлено в этой работе, мощной альтернативой всем предыдущим схемам являются самоускоряющиеся волновые пакеты. Самоускоряющиеся волновые пакеты были впервые предсказаны в квантовой механике 16 Берри и Балаш в 1979 году, а затем введены в оптику 17, 18 Христодулидесом и его сотрудниками.В частности, просто применяя соответствующую фазовую модуляцию к плоской волне, можно сгенерировать самоускоряющийся оптический пучок (волновой пакет) либо в свободном пространстве, либо в однородной среде без необходимости какой-либо внешней силы или нелинейного эффекта. Примечательно, что такие самоускоряющиеся волновые пакеты являются в основном общими, поскольку они позже были реализованы в различных физических системах, включая, помимо оптики, (поверхностную) плазмонику 19,20,21 , материю 22 , воду 23 и акустический 24 волн.Подобие частицам этих волновых пакетов 25 , наряду с легко управляемыми характеристиками ускорения, достигаемыми с помощью подходящей фазовой инженерии 26,27,28 , создают возможность формирования черенковского излучения путем настройки ускорения оптического волнового пакета. .

В этой работе мы вводим такое управление на осмысленном примере черенковского излучения, т. Е. ДГ, генерируемой световым импульсом, распространяющимся в оптическом волокне. В частности, мы показываем активное управление черенковским излучением с помощью самоускоряющегося импульса накачки, где сжатие ДГ (эквивалентное во времени пространственной фокусировке) может быть достигнуто либо настройкой мощности импульса накачки, либо его временным ускорением.Наши теоретические предсказания согласуются как с численным моделированием, так и с экспериментальными измерениями. Более того, мы предвидим, что разработанная здесь концепция может быть легко распространена на любую волновую систему, помимо оптики. {2} $$

(2)

Если импульс накачки ускоряется, v к зависит от расстояния, что приводит к генерации DW с разными частотами \ ({v} _ {DW} = \ frac {1} {2 {\ sigma}} — 2 {v} _ {k} \), испускаемых на различные расстояния распространения (дополнительные сведения см. в разделе «Дополнительная информация»).Эту особенность можно вывести из дисперсионного соотношения, изображенного на рис. 2 (а), для которого направление распространения (здесь определено как /) ДГ, генерируемых в данной точке на кривой (т. Е. заданная частота) может быть получена как производная — ( dk / dv ) −1 , где k — волновое число, а v — угловая частота в нормированных единицах. В этом случае, в зависимости от траектории импульса накачки, ДГ с разными частотами излучаются в разное время τ (и расстояния ξ ), что приводит либо к схождению, либо к расхождению ДГ, как показано на рис.2 (а, б). В нашем анализе мы рассматриваем типичный случай распространения одномодового волокна, когда длина волны оптической накачки находится в режиме аномальной дисперсии волокна (т.е. β 2 <0) и β 3 положительный. В этих условиях для того, чтобы ДГ сходились, более низкочастотные составляющие должны генерироваться раньше более высокочастотных. В таком случае, в зависимости от ускорения импульса накачки, могут быть реализованы различные сценарии формирования импульса, в том числе «фокусировка» ДГ в единое пространственно-временное положение (рис.2 (c)) или образование так называемых «каустиков» 31 , как показано на рис. 2 (d).

Рисунок 2

Описание динамических свойств дисперсионных волн (ДВ) с помощью трассировки лучей. ( a ) Набросок типичного отношения дисперсии, определяющего направление распространения DW. ( b ) В зависимости от исходной точки каждой отдельной DW может быть достигнуто расхождение или конвергенция двух дисперсионных волн, показанных на ( a ). ( c ) и ( d ) показывают, что DW (синие линии) могут либо фокусироваться на точку, либо образовывать каустику в соответствии с траекторией, по которой следуют импульсы накачки (красные линии).

В дальнейшем мы стремимся продемонстрировать принцип универсального изменения формы DW с помощью ускоряющих импульсов. В иллюстративных целях мы сначала исследуем эволюцию основного солитона, движущегося с постоянной скоростью, а также доменных стенок (проявляющих черту плоской волны), которые генерируются таким импульсом (см. Рис. 3 (а)). Не удивительно и в соответствии со свойствами плоской волны соответствующие спектральные компоненты ДГ обладают узкой шириной линии (генерируемой около частоты v = 90), как показано на рис.3 (б).

Рисунок 3

Генерация и развитие DW, когда импульс накачки является солитонным (строка 1) или импульсом Эйри (строки 2 и 3). ( a , c ) Численные результаты для временной эволюции импульса накачки (горячий цвет), наложенного на соответствующую генерацию DW (розовым цветом — получены с помощью спектральной фильтрации). Поскольку интенсивности DW значительно ниже, чем у насосов, для лучшей визуализации используются разные цветовые шкалы. На вставке ( c ) изображен временной профиль (показанный главным лепестком) ускоряющего импульса на выбранном расстоянии (отмечен горизонтальной пунктирной линией).( b , d ) показывают соответствующую эволюцию спектральной интенсивности (в логарифмической шкале). Обратите внимание, что пунктирный прямоугольник выделяет сгенерированные спектральные компоненты DW. Строка 3 иллюстрирует возможность управления сжатием DW путем линейной настройки либо нормированной энергии импульса от 20 до 120 ( e ), либо ускорения импульса накачки (т. Е. Значения параметра a ) от 0,024 до 0,032 ( ф ). Расположение точек схождения DW рассчитывается для каждого случая как на основе теории (звездочки), так и численного моделирования (квадраты).Соответственно, пунктирные (сплошные) линии представляют траекторию, за которой следует главный лепесток импульса для минимальной (максимальной) входной мощности в ( e ) или максимального (минимального) ускорения в ( f ). Обратите внимание, что все значения нормализованы.

Напротив, используя самоускоряющиеся импульсы накачки, можно генерировать «фокусирующие» DW через схему, проиллюстрированную на рис. 2 (c), как мы здесь показываем. В качестве типичного примера мы рассматриваем импульс Эйри (один из типов самоускоряющихся импульсов), который может быть легко сгенерирован путем применения спектральной кубической фазовой модуляции 17 через дисперсионную систему (такую ​​как формирователь волны, решетки и волокна).{2}) \) (см. Дополнительную информацию). В таком режиме ДГ с нормированными частотами в диапазоне между ≈ 70 и 90 возбуждаются от главного лепестка ускоряющей накачки, для которого нижние частотные составляющие ДГ появляются раньше, чем высшие. Как и ожидалось в этом случае, DW сходятся (рис. 3 (c)). Различная динамика фокусировки ДГ может быть достигнута за счет дальнейшей настройки параметров импульса ускоряющей накачки. Например, изменяя энергию ускоряющего импульса, можно изменить путь главного лепестка в результате фазовой самомодуляции.В свою очередь, это приводит к более высоким пиковым мощностям в начале распространения, более выраженной кривизне траектории накачки и, в конечном итоге, к более сильной фокусировке ДГ. Численные результаты, иллюстрирующие этот подход, представлены на рис. 3 (e), на котором мы построили пространственно-временное положение фокусируемых доменных стенок как функцию энергии входного импульса (синие квадраты). Как видно, в зависимости от подводимой энергии траектория импульса (красные линии) значительно изменяется, что приводит к более сильной фокусировке ДГ при более высоких энергиях.Такое управление фокусировкой ДГ также может быть выполнено путем прямого изменения кривизны траектории импульса, то есть изменения глубины модуляции (задаваемой параметром a ) кубической фазы спектра Эйри. Меньший параметр a соответствует большему изгибу траектории главного лепестка, что приводит к более быстрой фокусировке DW (рис. 3 (f)). Для обеих степеней свободы точки схождения почти коллинеарны, а «фокусное расстояние» демонстрирует квазилинейную зависимость от параметра a вместе с нелинейным трендом как функцией энергии входного импульса.Рассматривая путь, по которому идет пиковая мощность насоса, можно напрямую получить аналитически пространственно-временное положение, в котором DW сжимаются до минимальной ширины (см. Дополнительную информацию). Такие аналитические результаты отмечены голубыми звездами на рис. 3 (e, f), что показывает хорошее согласие с соответствующими численными расчетами (синие квадраты). Однако следует отметить, что альтернативные эффекты, такие как внутриимпульсное комбинационное рассеяние 32 или столкновение солитонов, также могут приводить к ускорению импульса (положительному или отрицательному).Тем не менее, эти эффекты обычно трудно контролировать. Это явно ограничивает возможность настройки пространственно-временной траектории импульса накачки и, в конечном итоге, препятствует наблюдению фокусировки (или активного формирования) доменных стенок с помощью ускоряющих насосов (что на самом деле до сих пор не было экспериментально реализовано). В нашем подходе ускорение импульсов накачки происходит непосредственно из-за начальной спектральной фазовой модуляции, наложенной на входной импульс, а не из-за какого-либо внешнего воздействия, которое может привести к серьезным экспериментальным ограничениям.В частности, если мы рассмотрим пример в исх. 33, находим, что мощность и ускорение (отрицательное) фундаментальных солитонов под действием внутриимпульсного комбинационного рассеяния света детерминированно фиксируются параметрами системы. Действительно, стоит еще раз подчеркнуть, что фокусировка DW, о которой здесь говорится, просто достигается путем настройки пространственно-временной траектории импульса накачки, параметры которой можно контролировать с помощью методов, показанных в ссылке. 26,27,28 (тем самым предлагая универсальный инструмент для эффективного формирования черенковского излучения).Мы также отмечаем, что наш подход качественно отличается от так называемых «горизонтов оптических событий», о которых недавно сообщалось в литературе (хотя может показаться, что они похожи на них). В последнем случае управление DW достигается после их генерации 34,35,36 , обычно наблюдаемых посредством контролируемого отражения слабого зондирующего импульса на более интенсивный импульс накачки, для которого необходимы как относительная задержка, так и параметры распространения. правильно отрегулировать.

Чтобы проверить эффективность нашей схемы при формировании ДГ, мы проводим эксперименты с использованием ускоряющих импульсов, запускаемых в волокно со смещенной дисперсией (DSF), длина волны нулевой дисперсии которого находится на 1547.7 нм. Импульс Эйри генерируется путем применения кубической фазовой модуляции, спектрально кодируемой с помощью формирователя импульса на ограниченном преобразованием импульсе, который излучается пассивным фемтосекундным лазером с синхронизацией мод, а затем вводится в DSF длиной 3,9 км (см. Информация). На выходе из этого волокна, где формируются ДГ, ускоряющий насос отфильтровывается с помощью настраиваемого фильтра. Затем остаточные частотные компоненты DW анализируются либо с помощью оптического спектрального анализатора (OSA), либо автокоррелятора интенсивности, работающего вместе с усилителем на волокне, легированном эрбием (EDFA) (подробности см. В дополнительной информации).Для оценки продольной эволюции DW к выходу фильтра подключаются два дополнительных участка DSF разной длины (1,4 км и 2,8 км). Мы подчеркиваем, что EDFA поддерживается на низком уровне усиления, чтобы избежать изменения формы DW, которое может быть вызвано фазовой самомодуляцией.

Используя начальную среднюю мощность 270 мкВт и спектральную фазовую модуляцию, задаваемую 3 + 2 , где A = 0.5 пс 3 , B = −3,3 пс 2 (такое значение может помешать импульсу Эйри формировать солитоны в начале распространения, одновременно удовлетворяя ограниченному разрешению нашего формирователя волны), и ω — угловая частота, измеренные спектры и автокорреляционные трассы на трех представляющих интерес расстояниях суммированы на рис. 4 (а). Как видно из этих рисунков, ДГ формируются в области нормальной дисперсии от 1529 до 1536 нм, спектр которой характеризуется двумя заметными пиками.После того как накачка отфильтрована (на z = 3.9 км), спектр ДГ существенно не изменится при последующем распространении (что указывает либо на отсутствие, либо на незначительное влияние нелинейных эффектов, т. Е. Фазовой самомодуляции, в процессе фокусировки ДГ). С другой стороны, во временной области видно явное сжатие ДГ. В частности, ширина автокорреляционного следа сокращается до минимума на z = 5,3 км. В этой точке сжатия ДГ мы можем заметить два небольших боковых пика на автокорреляционной трассе, предполагая, что траектория ускоряющего импульса не полностью совпадает с траекторией, показанной на рис.2 (в). В самом деле, кажется, что он скорее следует траектории, аналогичной случаю каустики, показанному на рис. 2 (d). Тем не менее наши эксперименты подтверждают, что сжатие ДГ связано с ускоряющимся движением импульса накачки. Генерация и эволюция DW могут быть визуализированы на рис. 4 (b), полученном путем численного решения уравнения (1). Здесь, как и в наших экспериментах, импульс накачки отбрасывается на z = 3.9 км. Чтобы оценить влияние более реалистичного распространения, мы также выполнили численное моделирование на основе обобщенной модели NLSE (см. Дополнительную информацию) 6 с учетом затухания (0.2 дБ / км), а также более высокие нелинейные эффекты (т. Е. Рамановское рассеяние и самоукручивание). Соответствующие численные результаты показаны на рис. 4 (c), которые показывают очень хорошее согласие как с экспериментальными результатами, так и с результатами моделирования на основе NLSE.

Рисунок 4

Наблюдение и соответствующее моделирование формирования DW с помощью самоускоряющегося импульса. ( a ) Измеренный спектр (левый столбец) и интенсивность автокорреляции (правый столбец) сгенерированных DW на выходе для различных длин DSF.( b ) Моделирование эволюции ДГ, полученное путем решения уравнения (1) с параметрами, соответствующими экспериментальным данным. ( c ) То же, что и ( b ), с использованием обобщенной модели, которая включает дополнительные эффекты комбинационного рассеяния света, самоукручивания и затухания. Отметим незначительную разницу в динамике ДГ после включения параметров более высокого порядка (см. Дополнительную информацию). Белыми пунктирными линиями в ( b ) и ( c ) отмечены три длины выходного волокна, использованные в ( a ) для сравнения наших экспериментов и соответствующих имитаций на основе NLSE.

Как показано на рис. 3, мы ожидаем управлять фокусировкой DW путем регулировки входной мощности или скорости ускорения импульса накачки. На рис. 5 мы суммируем экспериментальные результаты, полученные путем настройки этих управляющих параметров для распространения импульса Эйри в DSF длиной 5,3 км. В первом эксперименте мы сохраняем постоянную кубическую фазу (т.е. A, = 0,5 пс, 3 ), регулируя входную мощность от 200 мкВт до 360 мкВт (рис. 5 (a) и (c)).Как показано на рис. 5 (а), ширина автокорреляционных трасс DW сначала показывает уменьшение (сжатие), а затем увеличение (расширение) по мере увеличения входной мощности накачки. Оптимальное сжатие ДВ наблюдается при мощности 260 мкВт (рис. 5 (а)). В последующем эксперименте мы фиксируем мощность на этом оптимальном уровне, изменяя начальную кубическую фазу (т.е. параметр A ). Также в этом случае мы наблюдаем сжатие / расширение автокорреляционных трасс DW, что свидетельствует о том, что параметры, ранее использованные на рис.4 близки к оптимальным значениям для достижения фокусировки на z = 5,3 км. Экспериментальные результаты, представленные на рис. 5, полностью соответствуют численным предсказаниям на рис. 3 (e, f). Интересно, что хотя и входная мощность, и скорость ускорения могут быть эффективно использованы для управления сжатием DW, спектры, связанные с двумя различными параметрами настройки (мощность и кубическая фаза), демонстрируют значительные различия (см. Рис. 5 (c – f) ). Модификации входной мощности влияют на ширину полосы и мощность ДГ более существенно, чем изменения кубической фазы импульса.Это можно легко понять, вспомнив, что большие входные мощности связаны с увеличенным временным сжатием главного лепестка ускоряющего импульса. Это, в свою очередь, приводит к возбуждению DW с более широкой спектральной полосой пропускания и большей мощностью, как показано на рис. 5 (c) и (e).

Рис. 5

Экспериментальные результаты контроля DW с использованием различных входных мощностей (левый столбец) и глубины кубической фазовой модуляции A (правый столбец). Верхний и средний ряды показывают измеренные автокорреляционные трассы и спектры соответственно.В ( c ) мощность спектра DW становится больше в результате усиленного сжатия главного лепестка импульса Эйри, вызванного более высокой мощностью накачки. В ( d ) большие значения A приводят к уменьшению пиковой мощности насоса Эйри, что, в свою очередь, приводит к уменьшению мощности DW. ( e ) и ( f ) соответствуют ( a , c ) и (b , d ) соответственно. Здесь ширина автокорреляционной трассы (измеренная на e −1 уровня максимальной интенсивности) и соответствующие мощности ДГ, извлеченные из спектральных измерений.

В этой работе мы демонстрируем в рамках волоконной оптики эффективное управление генерацией и эволюцией ДГ, конкретный, но мощный пример черенковского излучения. Хотя мы исследовали только конкретный тип временных самоускоряющихся импульсов (импульсы Эйри), распространяющихся в режиме аномальной дисперсии волокна, наш подход в принципе может быть легко распространен на случай более произвольных «изгибных» волновых пакетов и к нормальному диспергирующему режиму 37, 38 .Следовательно, наши результаты могут найти широкое применение в разработке / улучшении эффективных оптических источников, в оптимизации генерации суперконтинуума и в управлении светом с помощью света 39, 40 . С более фундаментальной точки зрения, дальнейшие степени контроля ожидаются в трехмерных (пространственно-временных) и / или нелинейных системах 41,42,43 . Более того, предложенная идея может быть перенесена с оптики на несколько других систем в природе, что может привести к новым захватывающим приложениям.Например, можно сконцентрировать энергию акустических ударных волн, генерируемых сверхзвуковым объектом, на конкретной цели или повысить чувствительность современных детекторов, используемых в сегодняшних экспериментах по ядерной физике.

Настройка ускорительного насоса для карбюраторов Holley

Двигатели производительности похожи на людей — каждый немного отличается. Таким образом, с карбюратором Holley 750 CFM 0-3310 или одной из сотен других моделей эти карбюраторы специально созданы для универсального применения.После того, как карбюратор прикручен к вашему двигателю, он, вероятно, будет работать очень хорошо. Или ему может потребоваться дополнительная настройка, чтобы он работал наилучшим образом. Это обсуждение нацелено на схему ускорительного насоса. Этот рассказ будет в первую очередь посвящен уличным двигателям и их требованиям, хотя вся эта информация также может применяться во многих различных режимах работы двигателей.

Во всех карбюраторах используется схема ускорительного насоса определенного типа. Это необходимо для компенсации очень быстрого открытия дроссельной заслонки.Карбюраторы полагаются на скорость воздуха, проходящего через карбюратор, чтобы управлять основным контуром дозирования. Этот контур использует скорость воздуха, проходящего через ускорители, для создания низкого давления, которое толкает топливо из поплавковой камеры в двигатель. Это происходит потому, что атмосферное давление в поплавковой чаше толкает топливо к области низкого давления в ускорителях.

Главный дозирующий контур не подает топливо мгновенно. Если дроссельная заслонка резко открывается, главной цепи дозирования требуется мгновение или два, чтобы отреагировать на это изменение положения дроссельной заслонки.В эти моменты двигатель будет испытывать состояние обедненного соотношения воздух-топливо, что вызовет колебания или даже обратную вспышку впуска. Цепь ускорительного насоса устраняет это условие путем добавления дополнительного топлива для предотвращения кратковременного обедненного отношения воздух-топливо.

Давайте сначала опишем, как именно работает схема ускорительного насоса, а затем мы можем приступить к настройке. Топливо из бачка поступает в бачок ускорительного насоса через односторонний обратный клапан. Внутри резервуара ускорительного насоса находится небольшая диафрагма и возвратная пружина.На диафрагму воздействует серия рычагов, инициируемых нейлоновым эксцентриком, расположенным на первичном рычаге дроссельной заслонки.

На этом нижнем виде показано, как работает рычажный механизм. Нейлоновый кулачок (1) на первичном рычаге толкает толкатель вверх, передавая это движение через рычаг (2) на рычаг насоса (3), который толкает вверх диафрагму, расположенную внутри корпуса 30 куб. См (4).

Это сторона поплавкового барабана первичного дозирующего блока. Топливо из корпуса ускорительного насоса поступает в нижнюю правую часть дозирующего блока (стрелка) и движется по диагонали вверх, чтобы встретиться с каналом сопла вертикального ускорительного насоса.

Когда рычаг дроссельной заслонки открывается, кулачок нажимает на рычаг, который соединен с диафрагмой ускорительного насоса. Это действие толкает вверх диафрагму, которая выталкивает топливо вверх через диагональный канал в первичном дозирующем блоке, соединяясь с вертикальным каналом, расположенным в области первичной трубки Вентури. Внутри этого вертикального прохода находится обратный клапан, который удерживает топливо выше уровня поплавка, так что топливо присутствует, как только цепь активируется. Этот канал увенчан небольшим круглым соплом, на котором штамп с его выходным размером и который удерживается полым винтом, который позволяет топливу проходить в сопло.

Сопло (или распылитель) имеет два калиброванных отверстия, через которые топливо впрыскивается в каждую трубку Вентури. Топливо предназначено для компенсации короткого промежутка времени, необходимого для того, чтобы скорость входящего воздуха достигла уровня, при котором активируется главный дозирующий контур. Поскольку время подачи топлива имеет решающее значение, топливо необходимо впрыскивать, как только дроссельная заслонка начинает открываться. При очень медленном открытии дроссельной заслонки ускорительный насос подает очень мало топлива, потому что контур переключения холостого хода может приспособиться к этому условию.Основная задача цепи ускорительного насоса состоит в том, чтобы компенсировать быстрые переходы дроссельной заслонки из состояния, близкого к холостому, особенно при высокой нагрузке на двигатель, например, при запуске с тормозной полосы.

Мы также должны упомянуть на этот раз, что все карбюраторы Holley используют ускорительный насос на первичной стороне, но вакуумные вторичные четырехцилиндровые карбюраторы не используют насос на вторичной стороне. «Двойной насос» или механические вторичные карбюраторы используют ускорительный насос как на первичной, так и на вторичной стороне.Ускорительный насос не требуется для вакуумных вторичных карбюраторов, поскольку вторичное открытие срабатывает только тогда, когда на первичной стороне возникает достаточная скорость воздуха. Это обеспечивает достаточную скорость для мгновенного запуска потока топлива из вторичных ускорителей. Если вакуумный вторичный карбюратор колеблется при открытии вторичных звеньев, вторичная диафрагменная пружина слишком легкая, что приводит к слишком быстрому открытию вторичных звеньев.

Вакуумные четыре цилиндрических отверстия с вторичным приводом (слева) не требуют наличия цепи ускорительного насоса на вторичной стороне.Для механических вторичных карбюраторов Holley (справа) требуется вторичный контур ускорительного насоса, поскольку вторичные карбюраторы могут открываться даже при очень низких оборотах двигателя.

Во всех карбюраторах Holley типа 4150 и 4160 используется стандартный резервуар насоса объемом 30 куб. См. Эта номинальная мощность не является количеством топлива, подаваемым за полный ход системы ускорительного насоса, а представляет собой объем после 10 ходов. Это общая емкость резервуара. В зависимости от кулачка насоса объем, доставляемый после 10 ходов, обычно составляет менее 30 куб. См.Например, белый кулачок ускорительного насоса подаст менее 20 см3 топлива после 10 ходов. Размер сопла или распылителя не влияет на поставляемый объем. Сопло меньшего размера, такое как 28, будет просто создавать более продолжительный выброс топлива по сравнению с соплом большего размера.

Возможно, вы видели упоминания о более крупном насосе объемом 50 куб. См, который может быть добавлен. Даже для агрессивных, мощных двигателей тюнер крайне редко встретит ситуацию, когда уличный автомобиль нуждался бы в дополнительном объеме 50-кубового насоса на карбюраторе Holley в стиле 4150.Эти более крупные резервуары можно найти на гораздо более крупных карбюраторах Dominator серии 4500.

Один момент настройки, который будет подчеркиваться несколько раз в этой истории, заключается в том, что идеальная настройка ускорительного насоса — это наименьшее количество топлива, необходимое для создания оптимального ускорения. Когда возникают колебания, часто используемое решение — добавить больше топлива с помощью более крупной форсунки или с большей подъемной силой от более высокого кулачка насоса. Как мы уже упоминали, эта порция топлива предназначена только для предотвращения колебаний обедненной смеси. Стоит упомянуть, что колебания двигателя или зависание при сильном открытии дроссельной заслонки также может быть вызвано избытком топлива ускорительного насоса.

Вооружившись основами работы схемы, мы можем теперь приступить к аспектам настройки. К двум наиболее часто используемым компонентам ускорительного насоса относятся сквиртер или сопло ускорительного насоса и кулачок насоса. Но прежде чем мы перейдем к этим частям, всегда важно убедиться, что текущая система работает правильно. Самая частая причина раздражающих колебаний в нерабочем состоянии на Holley carbs — это снятие и установка основной чаши. Очень легко заменить топливный бачок в немного другом положении, которое может создать дополнительный зазор между кулачковым рычагом ускорительного насоса и насосом.Это задержит попадание насоса в двигатель и может вызвать колебания.

Рекомендации Холли по настройке рычажного механизма насоса относятся к обеспечению того, чтобы рычажный механизм не достигал нижнего предела, создавая связь, которая могла бы погнуть рычажный механизм. Холли рекомендует зазор 0,015 дюйма между плечом рычага и рычажным механизмом насоса при максимальном подъеме (WOT). Эта спецификация часто неверно интерпретируется как означающая, что должен быть зазор при неподвижном рычаге ускорительного насоса. Слишком большой клиренс на холостом ходу вызовет небольшие колебания.Отрегулируйте рычажный механизм ускорительного насоса в его ограниченном положении холостого хода так, чтобы при перемещении дроссельной заслонки это приводило к перемещению рычажного механизма ускорительного насоса. Это можно легко отрегулировать с помощью подпружиненного болта и гайки на рычаге насоса.

Часто тюнер может точно настроить дробь насоса, перемещая опору кулачка ускорительного насоса из положения № 1 в положение № 2. Положение номер 2 задерживает достижение максимального подъема кулачка на эксцентрике — добавляя подъем позже в положении дроссельной заслонки.Холли рекомендует положение № 1 для холостых оборотов ниже 900 об / мин и предлагает перейти в положение № 2 для двигателей, которые работают на холостом ходу выше 900–1000 об / мин.

Вот простой совет, который поможет сэкономить массу усилий. Убедитесь, что рычаг ускорительного насоса перемещает рычаг к диафрагме, как только дроссельная заслонка перемещается. Зазор у рычага вызовет колебания. Отрегулируйте подпружиненный болт и гайку до устранения зазора. Для минимизации зазора потребуется лишь небольшая регулировка.Не допускайте предварительной нагрузки на рычаг. Избыточный зазор на холостом ходу — очень частое явление, ремонт которого занимает минуту, а после его регулировки резко улучшаются ходовые качества.

Если двигатель продолжает работать с небольшими колебаниями на холостом ходу или двигатель спотыкается, когда дроссельная заслонка быстро открывается с холостого хода, тогда цепь ускорительного насоса — отличное место для начала настройки. Как упоминалось ранее, нерешительность при резком ускорении может возникнуть из-за слишком большого количества топлива (чрезмерно богатого), а также из-за более распространенной ситуации слишком малого количества топлива (слишком бедной).

Предположим, что у нас есть малоблочный двигатель с агрессивным распределительным валом, умеренной степенью сжатия, одноплоскостным впускным коллектором и дюймовой прокладкой, добавленной между карбюратором и впуском. Увеличенный объем нагнетания, создаваемый прокладкой, может потребовать больше топлива из контура ускорительного насоса. Давайте поставим на этот двигатель карбюратор Holley HP мощностью 750 кубических футов в минуту (номер по каталогу 82751). Это механический вторичный карбюратор с ускорительными насосами как на первичной, так и на вторичной стороне, часто называемый двойным насосом.

Стандартный размер сопла первичного ускорительного насоса на этом карбюраторе составляет 0,031 дюйма, тогда как вторичная сторона немного меньше — 0,028 дюйма. Простым решением может быть увеличение размера первичного ускорительного насоса до 0,035 дюйма и оценка изменения характеристик двигателя. Другая идея может заключаться в увеличении размеров как первичного, так и вторичного контура, а не добавления всего дополнительного топлива только к первичной стороне.

В крайнем случае, когда форсунка ускорительного насоса большего размера недоступна, отверстия можно просверлить с помощью штифтовых тисков и небольшого сверла до большего размера.И наоборот, когда требуется гораздо меньший размер сопла, мы просверливали эти проходы, а затем заполняли отверстие эпоксидной смолой, а затем повторно просверливали проход до меньшего размера.

Большинство тюнеров думают только о начальном объеме при рассмотрении изменений в цепи ускорительного насоса. Стоит отметить, что добавление подъемника кулачка насоса также увеличивает продолжительность впрыска добавленного топлива. Это может быть мелочами по настройке, но стоит подумать. Опять же, единственная цель этой схемы — минимизация расхода топлива, необходимого для максимального ускорения.В дорожных гонках или автокроссах, где дроссельная заслонка движется почти постоянно, это может стать важным фактором для предотвращения перекачки слишком большого количества топлива в двигатель. В этой ситуации меньшее количество топлива может быть преимуществом. Перемещение кулачка насоса с помощью небольшого винта на место номер 2 задержит работу кулачка насоса и может улучшить эту ситуацию.

Holley продает комплект кулачков ускорительного насоса с 8 кулачками, семь из которых предлагают различные формы подъема для индивидуальной настройки контура ускорительного насоса.

Holley предлагает ассортиментный набор кулачков насоса с восемью различными кулачками, семь из которых отличаются от стандартного белого кулачка, используемого на первичной стороне большинства карбюраторов Holley. Эти кулачки предлагают варианты в зависимости от подъема насоса на градус открытия дроссельной заслонки. Эта дополнительная подъемная сила приравнивается к дополнительному топливу, доставляемому данным отверстием дроссельной заслонки. Это создает ситуацию, когда колебания могут быть уменьшены за счет подачи большего количества топлива даже без изменения диаметра форсунки.

Это обсуждение предназначено для того, чтобы предложить основные параметры, которые тюнер карбюратора Holley может использовать для внесения некоторых незначительных изменений для решения незначительных проблем с колебаниями. Четырехцилиндровый карбюратор Holley существует уже несколько десятилетий и очень быстро реагирует даже на незначительные изменения калибровки. Наилучший подход к настройке — внести незначительные изменения и проехать на автомобиле, чтобы оценить результаты. Выполняйте одно изменение за раз и записывайте свои результаты. Вы обнаружите, что карбюратор Holley очень легко настроить, и вы сможете освоить его практически в кратчайшие сроки.

Если карбюратор бездействует достаточно долго, обратный клапан под форсункой ускорительного насоса может заедать, не позволяя топливу выйти из форсунки. Чтобы исправить это, просто удалите сопло и выбейте обратный клапан небольшой отверткой. Затем установите форсунку на место и проверьте цепь. Не пытайтесь выполнить тест со снятым соплом, так как выстрел из насоса запустит обратный клапан в том месте, где вы его никогда не найдете! Хуже того, он может упасть во впускной коллектор и вызвать повреждение двигателя.

Стандартная диафрагма для замены работает очень хорошо в большинстве случаев, но для старых карбюраторов, которые используются лишь изредка, а затем остаются без присмотра в течение нескольких месяцев, мы наблюдали, как черная диафрагма становилась хрупкой. Синтетическая зеленая диафрагма насоса Holley, разработанная для того, чтобы оставаться гибкой, легко ремонтируется.

Карбюраторы с дроссельными кожухами затрудняют замену форсунки первичного ускорительного насоса. Мы обнаружили, что ослабление винта и использование острогубцев облегчит удаление брызгателя.

% PDF-1.7 % 3126 0 объект > эндобдж xref 3126 787 0000000016 00000 н. 0000023257 00000 п. 0000023473 00000 п. 0000023519 00000 п. 0000023652 00000 п. 0000024234 00000 п. 0000024786 00000 п. 0000024825 00000 п. 0000025259 00000 п. 0000025374 00000 п. 0000025487 00000 п. 0000026611 00000 п. 0000027544 00000 п. 0000028411 00000 п. 0000028601 00000 п. 0000029816 00000 п. 0000030788 00000 п. 0000031286 00000 п. 0000031612 00000 п. 0000032644 00000 п. 0000033594 00000 п. 0000035782 00000 п. 0000041872 00000 п. 0000045819 00000 п. 0000046721 00000 п. 0000047441 00000 п. 0000437277 00000 н. 0000437397 00000 н. 0000437989 00000 п. 0000438028 00000 н. 0000440859 00000 п. 0000441962 00000 н. 0000442461 00000 н. 0000442823 00000 н. 0000444207 00000 н. 0000444248 00000 н. 0000479136 00000 н. 0000479177 00000 н. 0000514065 00000 н. 0000514106 00000 н. 0000514181 00000 п. 0000514338 00000 н. 0000514445 00000 н. 0000514656 00000 н. 0000514891 00000 н. 0000515034 00000 н. 0000515225 00000 н. 0000515376 00000 н. 0000515565 00000 н. 0000515763 00000 н. 0000515910 00000 н. 0000516119 00000 н. 0000516319 00000 н. 0000516462 00000 н. 0000516611 00000 н. 0000516805 00000 н. 0000516978 00000 н. 0000517203 00000 н. 0000517422 00000 н. 0000517568 00000 н. 0000517778 00000 н. 0000518011 00000 н. 0000518159 00000 н. 0000518333 00000 н. 0000518567 00000 н. 0000518745 00000 н. 0000518901 00000 н. 0000519043 00000 н. 0000519293 00000 н. 0000519465 00000 н. 0000519665 00000 н. 0000519831 00000 н. 0000519961 00000 н. 0000520149 00000 н. 0000520277 00000 н. 0000520431 00000 н. 0000520593 00000 н. 0000520715 00000 н. 0000520873 00000 н. 0000521089 00000 п. 0000521209 00000 н. 0000521377 00000 н. 0000521507 00000 н. 0000521673 00000 н. 0000521893 00000 н. 0000522035 00000 н. 0000522169 00000 н. 0000522357 00000 н. 0000522529 00000 н. 0000522663 00000 н. 0000522807 00000 н. 0000522999 00000 н. 0000523139 00000 п. 0000523297 00000 н. 0000523465 00000 н. 0000523601 00000 п. 0000523735 00000 н. 0000523901 00000 н. 0000524089 00000 н. 0000524195 00000 н. 0000524339 00000 н. 0000524503 00000 н. 0000524675 00000 н. 0000524827 00000 н. 0000524977 00000 н. 0000525159 00000 н. 0000525281 00000 н. 0000525433 00000 н. 0000525597 00000 н. 0000525751 00000 н. 0000525899 00000 н. 0000526103 00000 п. 0000526319 00000 н. 0000526481 00000 н. 0000526643 00000 н. 0000526807 00000 н. 0000527015 00000 н. 0000527185 00000 н. 0000527366 00000 н. 0000527588 00000 н. 0000527800 00000 н. 0000528023 00000 н. 0000528169 00000 н. 0000528317 00000 н. 0000528499 00000 н. 0000528697 00000 н. 0000528885 00000 н. 0000529051 00000 н. 0000529211 00000 н. 0000529365 00000 н. 0000529533 00000 н. 0000529679 00000 н. 0000529865 00000 н. 0000530055 00000 н. 0000530201 00000 н. 0000530373 00000 н. 0000530581 00000 н. 0000530757 00000 н. 0000530911 00000 п. 0000531071 00000 н. 0000531233 00000 н. 0000531383 00000 н. 0000531539 00000 н. 0000531735 00000 н. 0000531873 00000 н. 0000532045 00000 н. 0000532197 00000 н. 0000532471 00000 н. 0000532727 00000 н. 0000532947 00000 н. 0000533165 00000 н. 0000533365 00000 н. 0000533509 00000 н. 0000533691 00000 п. 0000533859 00000 п. 0000534095 00000 н. 0000534333 00000 п. 0000534535 00000 н. 0000534717 00000 н. 0000534897 00000 н. 0000535061 00000 н. 0000535167 00000 н. 0000535285 00000 н. 0000535529 00000 н. 0000535645 00000 н. 0000535797 00000 н. 0000535929 00000 н. 0000536057 00000 н. 0000536209 00000 н. 0000536343 00000 п. 0000536465 00000 н. 0000536617 00000 н. 0000536751 00000 н. 0000536925 00000 н. 0000537049 00000 п. 0000537173 00000 п. 0000537335 00000 п. 0000537465 00000 н. 0000537591 00000 н. 0000537759 00000 н. 0000537887 00000 н. 0000538013 00000 н. 0000538171 00000 п. 0000538374 00000 н. 0000538520 00000 н. 0000538660 00000 п. 0000538872 00000 н. 0000539042 00000 н. 0000539176 00000 н. 0000539356 00000 н. 0000539498 00000 н. 0000539630 00000 н. 0000539824 00000 н. 0000540052 00000 н. 0000540182 00000 н. 0000540346 00000 п. 0000540586 00000 н. 0000540766 00000 н. 0000540900 00000 н. 0000541137 00000 н. 0000541313 00000 н. 0000541529 00000 н. 0000541731 00000 н. 0000541849 00000 н. 0000542033 00000 н. 0000542213 00000 н. 0000542427 00000 н. 0000542615 00000 н. 0000542821 00000 н. 0000542967 00000 н. 0000543129 00000 н. 0000543290 00000 н. 0000543418 00000 н. 0000543582 00000 н. 0000543744 00000 н. 0000543902 00000 н. 0000544058 00000 н. 0000544188 00000 п. 0000544420 00000 н. 0000544574 00000 н. 0000544708 00000 н. 0000544854 00000 н. 0000545032 00000 н. 0000545190 00000 н. 0000545350 00000 н. 0000545518 00000 н. 0000545702 00000 н. 0000545884 00000 н. 0000546058 00000 н. 0000546230 00000 н. 0000546378 00000 п. 0000546542 00000 н. 0000546710 00000 н. 0000546836 00000 н. 0000547014 00000 н. 0000547160 00000 н. 0000547296 00000 н. 0000547446 00000 н. 0000547592 00000 п. 0000547726 00000 н. 0000547874 00000 н. 0000548032 00000 н. 0000548178 00000 н. 0000548374 00000 н. 0000548524 00000 н. 0000548772 00000 н. 0000548890 00000 н. 0000549012 00000 н. 0000549172 00000 н. 0000549322 00000 н. 0000549488 00000 н. 0000549636 00000 н. 0000549884 00000 н. 0000550030 00000 н. 0000550164 00000 н. 0000550302 00000 н. 0000550462 00000 н. 0000550602 00000 н. 0000550738 00000 н. 0000550892 00000 н. 0000551032 00000 н. 0000551150 00000 н. 0000551298 00000 н. 0000551514 00000 н. 0000551642 00000 н. 0000551800 00000 н. 0000552012 00000 н. 0000552214 00000 н. 0000552356 00000 п. 0000552536 00000 н. 0000552670 00000 н. 0000552854 00000 н. 0000553014 00000 н. 0000553142 00000 п. 0000553274 00000 н. 0000553402 00000 н. 0000553564 00000 н. 0000553718 00000 н. 0000553910 00000 н. 0000554050 00000 н. 0000554186 00000 п. 0000554332 00000 н. 0000554472 00000 н. 0000554610 00000 н. 0000554750 00000 н. 0000554878 00000 н. 0000555038 00000 н. 0000555186 00000 п. 0000555338 00000 н. 0000555506 00000 н. 0000555706 00000 н. 0000555880 00000 н. 0000556024 00000 н. 0000556184 00000 п. 0000556334 00000 н. 0000556460 00000 н. 0000556598 00000 н. 0000556814 00000 н. 0000557024 00000 н. 0000557232 00000 н. 0000557430 00000 н. 0000557630 00000 н. 0000557820 00000 н. 0000557968 00000 н. 0000558106 00000 п. 0000558252 00000 н. 0000558412 00000 н. 0000558564 00000 н. 0000558732 00000 н. 0000558892 00000 н. 0000559060 00000 н. 0000559232 00000 н. 0000559426 00000 п. 0000559588 00000 н. 0000559726 00000 н. 0000559892 00000 н. 0000560028 00000 н. 0000560200 00000 н. 0000560340 00000 н. 0000560477 00000 н. 0000560618 00000 н. 0000560771 00000 п. 0000560952 00000 п. 0000561155 00000 п. 0000561318 00000 н. 0000561535 00000 н. 0000561684 00000 н. 0000561919 00000 п. 0000562046 00000 н. 0000562163 00000 н. 0000562342 00000 н. 0000562556 00000 н. 0000562712 00000 н. 0000562866 00000 н. 0000563076 00000 н. 0000563180 00000 н. 0000563288 00000 н. 0000563470 00000 п. 0000563614 00000 н. 0000563857 00000 н. 0000564025 00000 н. 0000564161 00000 п. 0000564361 00000 н. 0000564499 00000 н. 0000564781 00000 н. 0000564985 00000 н. 0000565178 00000 н. 0000565374 00000 н. 0000565560 00000 н. 0000565704 00000 н. 0000565878 00000 н. 0000566048 00000 н. 0000566256 00000 н. 0000566388 00000 н. 0000566598 00000 н. 0000566772 00000 н. 0000566946 00000 н. 0000567159 00000 н. 0000567349 00000 н. 0000567567 00000 н. 0000567759 00000 н. 0000567963 00000 н. 0000568151 00000 п. 0000568363 00000 н. 0000568591 00000 н. 0000568827 00000 н. 0000569055 00000 н. 0000569213 00000 п. 0000569399 00000 н. 0000569615 00000 н. 0000569817 00000 н. 0000570065 00000 н. 0000570305 00000 н. 0000570553 00000 н. 0000570813 00000 н. 0000571027 00000 н. 0000571193 00000 н. 0000571369 00000 н. 0000571531 00000 н. 0000571753 00000 н. 0000571935 00000 н. 0000572095 00000 н. 0000572269 00000 н. 0000572427 00000 н. 0000572611 00000 н. 0000572833 00000 н. 0000573019 00000 н. 0000573225 00000 н. 0000573393 00000 н. 0000573555 00000 н. 0000573721 00000 н. 0000573895 00000 н. 0000574093 00000 н. 0000574241 00000 н. 0000574393 00000 н. 0000574599 00000 н. 0000574843 00000 н. 0000574961 00000 н. 0000575081 00000 н. 0000575219 00000 н. 0000575433 00000 н. 0000575573 00000 н. 0000575693 00000 п. 0000575821 00000 н. 0000575955 00000 н. 0000576119 00000 н. 0000576297 00000 н. 0000576431 00000 н. 0000576541 00000 н. 0000576673 00000 н. 0000576930 00000 н. 0000577042 00000 н. 0000577174 00000 н. 0000577336 00000 н. 0000577484 00000 н. 0000577626 00000 н. 0000577792 00000 н. 0000577932 00000 н. 0000578052 00000 н. 0000578222 00000 н. 0000578368 00000 н. 0000578546 00000 н. 0000578682 00000 н. 0000578804 00000 н. 0000578948 00000 н. 0000579082 00000 н. 0000579202 00000 н. 0000579322 00000 н. 0000579446 00000 н. 0000579594 00000 н. 0000579736 00000 н. 0000579902 00000 н. 0000580040 00000 н. 0000580160 00000 н. 0000580306 00000 н. 0000580484 00000 н. 0000580620 00000 н. 0000580742 00000 н. 0000580906 00000 н. 0000581026 00000 н. 0000581146 00000 н. 0000581266 00000 н. 0000581390 00000 н. 0000581516 00000 н. 0000581642 00000 н. 0000581764 00000 н. 0000581873 00000 н. 0000581986 00000 н. 0000582120 00000 н. 0000582264 00000 н. 0000582391 00000 н. 0000582616 00000 н. 0000582751 00000 н. 0000582919 00000 н. 0000583081 00000 н. 0000583210 00000 н. 0000583423 00000 п. 0000583672 00000 н. 0000583807 00000 н. 0000583954 00000 н. 0000584093 00000 н. 0000584240 00000 н. 0000584379 00000 н. 0000584522 00000 н. 0000584665 00000 н. 0000584838 00000 н. 0000584985 00000 н. 0000585134 00000 н. 0000585297 00000 н. 0000585462 00000 н. 0000585635 00000 н. 0000585788 00000 н. 0000585975 00000 н. 0000586124 00000 п. 0000586319 00000 н. 0000586472 00000 н. 0000586627 00000 н. 0000586748 00000 н. 0000586869 00000 н. 0000586990 00000 н. 0000587141 00000 н. 0000587274 00000 н. 0000587427 00000 н. 0000587604 00000 н. 0000587789 00000 н. 0000587946 00000 н. 0000588125 00000 н. 0000588276 00000 н. 0000588387 00000 н. 0000588558 00000 н. 0000588707 00000 н. 0000588862 00000 н. 0000589046 00000 н. 0000589193 00000 н. 0000589338 00000 н. 0000589559 00000 н. 0000589722 00000 н. 0000589857 00000 н. 00005 00000 н. 00005 00000 н. 00005 00000 н. 0000590535 00000 н. 0000590708 00000 н. 0000590912 00000 н. 0000591073 00000 н. 0000591204 00000 н. 0000591399 00000 н. 0000591560 00000 н. 0000591755 00000 н. 0000591967 00000 н. 0000592148 00000 п. 0000592295 00000 н. 0000592430 00000 н. 0000592605 00000 н. 0000592768 00000 н. 0000592937 00000 н. 0000593164 00000 п. 0000593321 00000 п. 0000593512 00000 н. 0000593649 00000 н. 0000593790 00000 н. 0000593995 00000 н. 0000594116 00000 н. 0000594229 00000 н. 0000594412 00000 н. 0000594603 00000 н. 0000594770 00000 н. 0000594871 00000 н. 0000595092 00000 н. 0000595235 00000 н. 0000595438 00000 н. 0000595653 00000 п. 0000595808 00000 н. 0000595929 00000 н. 0000596106 00000 п. 0000596245 00000 н. 0000596404 00000 н. 0000596531 00000 н. 0000596636 00000 н. 0000596829 00000 н. 0000596992 00000 н. 0000597169 00000 н. 0000597388 00000 н. 0000597523 00000 н. 0000597760 00000 н. 0000597931 00000 н. 0000598128 00000 н. 0000598255 00000 н. 0000598404 00000 н. 0000598567 00000 н. 0000598736 00000 н. 0000598905 00000 н. 0000599068 00000 н. 0000599255 00000 н. 0000599366 00000 н. 0000599541 00000 н. 0000599718 00000 н. 0000599901 00000 н. 0000600018 00000 п. 0000600153 00000 п. 0000600306 00000 н. 0000600443 00000 п. 0000600642 00000 н. 0000600871 00000 п. 0000601030 00000 н. 0000601197 00000 н. 0000601366 00000 н. 0000601523 00000 н. 0000601640 00000 н. 0000601783 00000 н. 0000601972 00000 н. 0000602131 00000 п. 0000602326 00000 н. 0000602495 00000 н. 0000602678 00000 н. 0000602853 00000 н. 0000602962 00000 н. 0000603127 00000 н. 0000603258 00000 н. 0000603393 00000 н. 0000603534 00000 п. 0000603707 00000 н. 0000603896 00000 н. 0000604033 00000 п. 0000604184 00000 п. 0000604341 00000 п. 0000604482 00000 н. 0000604665 00000 н. 0000604848 00000 н. 0000605009 00000 н. 0000605162 00000 п. 0000605323 00000 н. 0000605512 00000 н. 0000605707 00000 н. 0000605840 00000 н. 0000606015 00000 н. 0000606196 00000 н. 0000606365 00000 н. 0000606490 00000 н. 0000606677 00000 н. 0000606828 00000 н. 0000607049 00000 п. 0000607210 00000 н. 0000607433 00000 н. 0000607600 00000 н. 0000607783 00000 н. 0000607912 00000 н. 0000608077 00000 н. 0000608244 00000 н. 0000608391 00000 п. 0000608544 00000 н. 0000608695 00000 н. 0000608830 00000 н. 0000608979 00000 н. 0000609154 00000 н. 0000609343 00000 п. 0000609508 00000 н. 0000609671 00000 н. 0000609796 00000 н. 0000609993 00000 н. 0000610268 00000 н. 0000610537 00000 п. 0000610736 00000 н. 0000610915 00000 н. 0000611140 00000 н. 0000611463 00000 н. 0000611632 00000 н. 0000611853 00000 п. 0000611970 00000 п. 0000612241 00000 н. 0000612518 00000 н. 0000612751 00000 н. 0000612944 00000 н. 0000613143 00000 н. 0000613300 00000 п. 0000613455 00000 н. 0000613650 00000 н. 0000613807 00000 н. 0000614004 00000 н. 0000614155 00000 н. 0000614298 00000 н. 0000614497 00000 н. 0000614658 00000 н. 0000614799 00000 н. 0000615020 00000 н. 0000615145 00000 н. 0000615354 00000 н. 0000615473 00000 п. 0000615680 00000 н. 0000615839 00000 н. 0000616030 00000 н. 0000616209 00000 н. 0000616388 00000 н. 0000616619 00000 п. 0000616774 00000 н. 0000616933 00000 н. 0000617082 00000 п. 0000617231 00000 п. 0000617468 00000 н. 0000617659 00000 н. 0000617824 00000 н. 0000617983 00000 п. 0000618106 00000 п. 0000618271 00000 н. 0000618452 00000 н. 0000618595 00000 н. 0000618738 00000 п. 0000618919 00000 п. 0000619214 00000 н. 0000619335 00000 н. 0000619480 00000 н. 0000619621 00000 н. 0000619780 00000 н. 0000619957 00000 н. 0000620132 00000 н. 0000620326 00000 н. 0000620482 00000 н. 0000620708 00000 н. 0000620847 00000 н. 0000620992 00000 н. 0000621193 00000 н. 0000621410 00000 н. 0000621605 00000 н. 0000621744 00000 н. 0000621905 00000 н. 0000622066 00000 н. 0000622249 00000 н. 0000622422 00000 н. 0000622589 00000 н. 0000622720 00000 н. 0000622851 00000 п. 0000623072 00000 н. 0000623181 00000 п. 0000623402 00000 п. 0000623543 00000 н. 0000623688 00000 п. 0000623903 00000 н. 0000624034 00000 н. 0000624181 00000 п. 0000624412 00000 н. 0000624585 00000 н. 0000624750 00000 н. 0000624927 00000 н. 0000625052 00000 н. 0000625185 00000 н. 0000625324 00000 н. 0000625473 00000 н. 0000625630 00000 н. 0000625773 00000 н. 0000625976 00000 н. 0000626181 00000 п. 0000626306 00000 н. 0000626465 00000 н. 0000626664 00000 н. 0000626817 00000 н. 0000627000 00000 н. 0000627137 00000 н. 0000627360 00000 н. 0000627497 00000 н. 0000627670 00000 н. 0000627835 00000 н. 0000627974 00000 н. 0000628125 00000 н. 0000628314 00000 п. 0000628459 00000 н. 0000628604 00000 н. 0000628757 00000 н. 0000628952 00000 п. 0000629091 00000 н. 0000629240 00000 н. 0000629377 00000 н. 0000629590 00000 н. 0000629751 00000 п. 0000629886 00000 н. 0000630011 00000 н. 0000630166 00000 п. 0000630299 00000 н. 0000630484 00000 н. 0000630637 00000 п. 0000630798 00000 н. 0000630967 00000 н. 0000631146 00000 н. 0000631351 00000 н. 0000631556 00000 н. 0000631803 00000 н. 0000631982 00000 н. 0000632179 00000 н. 0000632352 00000 н. 0000632543 00000 н. 0000632736 00000 н. 0000632923 00000 н. 0000633080 00000 н. 0000633237 00000 н. 0000633402 00000 п. 0000633803 00000 п. 0000633912 00000 н. 0000634109 00000 п. 0000634312 00000 п. 0000634497 00000 п. 0000634634 00000 н. 0000634813 00000 п. 0000634998 00000 н. 0000635135 00000 п. 0000635274 00000 н. 0000635405 00000 п. 0000635608 00000 п. 0000635757 00000 п. 0000635954 00000 п. 0000636139 00000 п. 0000636254 00000 п. 0000636387 00000 п. 0000636538 00000 н. 0000636731 00000 н. 0000636880 00000 н. 0000637009 00000 н. 0000637250 00000 н. 0000637431 00000 н. 0000637576 00000 н. 0000637749 00000 н. 0000637900 00000 п. 0000638051 00000 н. 0000638190 00000 п. 0000638309 00000 п. 0000638470 00000 п. 0000638637 00000 п. 0000638788 00000 н. 0000016036 00000 п. трейлер ] >> startxref 0 %% EOF 3912 0 объект > поток x [{Xe ڿ rhwFL8 «M2 N1f 橑 X @ (, OfnXyBkwekM- \ yAw ؿ 㺄 w ~

Радужный кашемир Dupioni Silk 100% шелк ширина 44 дюйма S-151 по двору

Джерри Понд имеет большой опыт работы в секторе информационных и коммуникационных технологий (ИКТ).Как генеральный директор NBTel и президент ее преемника, Aliant Telecom, он стоял у руля в период значительного дерегулирования канадской промышленности. Под его новаторским руководством NBTel стала международным лидером в области ИКТ. Джерри Понд родился в Квебеке и вырос в Нью-Брансуике. Среди образовательных достижений Джерри Понд получил степень бакалавра искусств в Университете Нью-Брансуика; Программа организационной эффективности, Гарвардский университет; Программа для руководителей, Университет Макгилла; и Программа для руководителей высшего звена, Университет Западного Онтарио.Понд является председателем и соучредителем Mariner Partners Inc., а также соучредителем ряда успешных стартапов в области ИКТ в Атлантической Канаде, включая iMagicTV, Q1 Labs, Brovada Technologies, Radian6, Shift Energy и Cirrus9. Он также является соучредителем Propel ICT, акселератора стартапов, соучредителем Центра Понд-Дешпанде в Университете Нью-Брансуика и соучредителем East Valley Ventures, акселератора для атлантического канадского старта. крупных компаний, цель которых — помочь увлеченным предпринимателям создавать значимые и устойчивые технологические компании.Он является директором Upside Foundation, Делового совета NB и Национальной организации Angel Capital. Джерри Понд был удостоен множества наград как на региональном, так и на национальном уровне, включая престижную награду Канадской ассоциации повышения производительности информации (CIPA) 1997 года и Зала славы, награду NB Knowledge Industry Recognition and Achievement (KIRA) Awards Person of the Year в 2002 году, Золотая юбилейная медаль Королевы 2003 года, награда журнала Atlantic Business Magazine «Топ-50 генеральных директоров» в Атлантической Канаде в 2003 и 2005 годах, почетный доктор наук Университета Нью-Брансуика и почетный доктор коммерции Университета Святой Марии.За свой неустанный вклад в региональное экономическое развитие, он был введен в Зал славы бизнеса Нью-Брансуика в октябре 2007 года. Вдохновляющий новатор и социальный предприниматель, Джерри Понд также был признан канадским ангелом года 2011 от Techvibes & KPMG. В 2012 году он получил гуманитарную премию Канадского Красного Креста для Нью-Брансуика. В 2013 году он был дважды отмечен организацией Learning Partnership как поборник государственного образования, а затем как обладатель Ордена Нью-Брансуика за его новаторский дух и критический вклад во многие истории успеха Нью-Брансуика в области информационных технологий и телекоммуникаций.На церемонии награждения Canadian Startup Awards 2014 г. страсть Джерри Понд к поддержке инноваций и предпринимательства была отмечена престижной наградой Wolf Blass за выслугу лет. В 2015 году он был награжден первым в истории чемпионом по предпринимательству Банка развития бизнеса Канады — национальной наградой, которая отмечает достижения канадского предпринимателя и лидера сообщества, который создал и развил один или несколько успешных предприятий малого или среднего бизнеса, внося при этом значительный вклад. к процветанию канадской предпринимательской экосистемы.В 2017 году Джерри получил премию EY Atlantic Lifetime Achievement Award в знак признания его неизменного вклада в канадский бизнес, благотворительной деятельности и выдающегося лидерства в обществе и по всей Канаде. Совсем недавно Джерри был назначен членом Ордена Канады. Он является краеугольным камнем Канадской системы наград и отмечает выдающиеся достижения, преданность обществу и служение нации.

Почтовый мешок: когда и как менять ускорительный насос карбюратора

Q: Мой автомобиль, оборудованный Holley , споткнулся от полной остановки.Кто-то сказал мне, что, возможно, нужно изменить размер сопла ускорительного насоса. Как мне узнать, нужно ли менять ускорительный насос и как определить подходящий размер?

A: Это правда, что одна из наиболее частых причин спотыкания — это отсутствие надлежащего выстрела ускорительного насоса. Перед тем, как попасть в изменении вашего ускорительного насоса, обратите внимание на его напорном патрубке и убедитесь, что он получает достаточное количество топлива. В противном случае следует осмотреть диафрагму насоса на предмет дырки или разрыва.Вы также должны убедиться, что в проходе насоса нет мусора или мусора. Далее проверьте регулировку на помпе. Для этого полностью откройте дроссельную заслонку, нажмите рычаг рычага насоса вниз и отрегулируйте регулировочную пружину насоса так, чтобы получить зазор 0,015 дюйма между рычагом ускорительного насоса и рычагом.

Теперь можно обратить внимание на ускорительный насос.

Даже при правильном впрыске карбюратор будет работать плохо, если диаметр сопла ускорительного насоса (сквиртера) неправильный.Если при начальном ускорении автомобиль ведет себя вялым и из выхлопного отверстия вырывается клубок черного дыма, возможно, диаметр сопла ускорительного насоса слишком велик. (Другая возможная причина — выливание топлива из вентиляционных трубок.) Как и в случае струйной обработки, определение наилучшего диаметра сквиртера выполняется методом проб и ошибок. Просто увеличьте или уменьшите размер, пока не получите наилучшую производительность.

Холли создал это отличное видео, которое показывает, как размер насоса влияет на производительность.

Имейте в виду, что вы также можете точно настроить производительность ускорительного насоса, отрегулировав настройки рычага насоса, о которых мы упоминали ранее.При использовании овальной гусеницы следует отрегулировать рычаг таким образом, чтобы не было люфта в рычажном механизме насоса, когда дроссельная заслонка закрыта. Это гарантирует, что не будет спотыкания на обедненной смеси, когда карбюратор выйдет из режима холостого хода. Дрэг-рейсинг требует подхода, обеспечивающего максимально жесткий стартовый старт с ножным тормозом. В этом случае пружину блокировки рычага насоса следует отрегулировать так, чтобы топливо начинало выходить через форсунку при частоте вращения двигателя ниже пусковой. Если автомобиль покидает стартовую линию при 5000 об / мин, выстрела насоса должна начаться при 4700–4800 об / мин.Ключевым моментом является отсутствие скачков в системе ускорительного насоса на начальных оборотах, чтобы насос не использовался ниже этих оборотов.

Как видите, размер и настройки ускорительного насоса могут иметь большое значение для производительности вашего автомобиля.

Хотите больше возможностей для вопросов и ответов? Здесь вы найдете все наши статьи о Mailbag.

Автор: Дэвид Фуллер Дэвид Фуллер — управляющий редактор OnAllCylinders. За свою 20-летнюю карьеру в автомобильной промышленности он освещал множество гонок, шоу и отраслевых мероприятий, а также написал статьи для нескольких журналов.Он также сотрудничал с ведущими и отраслевыми изданиями по широкому кругу редакционных проектов.

Оставить ответ